Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 86(9): 2783-9, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14507014

ABSTRACT

Permeabilized microbial cells can be used as a crude enzyme preparation for industrial applications. Immobilization and process recycling can compensate for the low specific activity of this preparation. For biomass immobilization, the common support is alginate beads; however, its low surface area and the low biomass concentration limit the activity. We here describe a biocatalyst consisting of a paste of permeabilized Kluyveromyces lactis cells gelled with manganese alginate over a semicircular stainless steel screen. A ratio of wet permeabilized biomass to alginate of 50:4 (wt/wt) resulted in a paste with maximum immobilized beta-galactosidase activity and maximum gel biomass retention. The biocatalysts retained activity better when stored in milk at 4 degrees C than in 50% glycerol. The unused biocatalysts stored in milk did not lose activity after 50 d. However, repeated use of the same biocatalyst 40 times resulted in almost 50% loss of activity. A bioreactor design with two different conditions of operation were tested for milk lactose hydrolysis using this biocatalyst. The bioreactor was operated at 40 degrees C as packed bed or with recirculation, similar to a continuous stirred tank reactor. The continuous system with recirculation resulted in 82.9% lactose hydrolysis at a residence time of 285.5 min (flow of 2.0 ml/min), indicating the potential of this system for processing low lactose milk, or even in processing other substrates, using an appropriate biocatalyst.


Subject(s)
Bioreactors , Lactose/metabolism , Milk/chemistry , Alginates , Animals , Enzymes, Immobilized , Food Handling/instrumentation , Food Handling/methods , Hydrolysis , Kluyveromyces/enzymology , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...