Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Occup Hyg ; 58(3): 355-79, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24389082

ABSTRACT

BACKGROUND: The production and use of carbon nanotubes (CNTs) is rapidly growing. With increased production, there is potential that the number of occupational exposed workers will rapidly increase. Toxicological studies on rats have shown effects in the lungs, e.g., inflammation, granuloma formation, and fibrosis after repeated inhalation exposure to some forms of multi-walled CNTs (MWCNTs). Still, when it comes to health effects, it is unknown which dose metric is most relevant. Limited exposure data for CNTs exist today and no legally enforced occupational exposure limits are yet established. The aim of this work was to quantify the occupational exposures and emissions during arc discharge production, purification, and functionalization of MWCNTs. The CNT material handled typically had a mean length <5 µm. Since most of the collected airborne CNTs did not fulfil the World Health Organization fibre dimensions (79% of the counted CNT-containing particles) and since no microscopy-based method for counting of CNTs exists, we decided to count all particle that contained CNTs. To investigate correlations between the used exposure metrics, Pearson correlation coefficient was used. METHODS: Exposure measurements were performed at a small-scale producer of MWCNTs and respirable fractions of dust concentrations, elemental carbon (EC) concentrations, and number concentrations of CNT-containing particles were measured in the workers' breathing zones with filter-based methods during work. Additionally, emission measurements near the source were carried out during different work tasks. Respirable dust was gravimetrically determined; EC was analysed with thermal-optical analysis and the number of CNT-containing particles was analysed with scanning electron microscopy. RESULTS: For the personal exposure measurements, respirable dust ranged between <73 and 93 µg m(-3), EC ranged between <0.08 and 7.4 µg C m(-3), and number concentration of CNT-containing particles ranged between 0.04 and 2.0 cm(-3). For the emission measurements, respirable dust ranged between <2800 and 6800 µg m(-3), EC ranged between 0.05 and 550 µg C m(-3), and number concentration of CNT-containing particles ranged between <0.20 and 11cm(-3). CONCLUSIONS: The highest exposure to CNTs occurred during production of CNTs. The highest emitted number concentration of CNT-containing particles occurred in the sieving, mechanical work-up, pouring, weighing, and packaging of CNT powder during the production stage. To be able to quantify exposures and emissions of CNTs, a selective and sensitive method is needed. Limitations with measuring EC and respirable dust are that these exposure metrics do not measure CNTs specifically. Only filter-based methods with electron microscopy analysis are, to date, selective and sensitive enough. This study showed that counting of CNT-containing particles is the method that fulfils those criteria and is therefore the method recommended for future quantification of CNT exposures. However, CNTs could be highly toxic not only because of their length but also because they could contain, for example transition metals and polycyclic aromatic hydrocarbons, or have surface defects. Lack of standardized counting criteria for CNTs to be applied at the electron microscopy analysis is a limiting factor, which makes it difficult to compare exposure data from different studies.


Subject(s)
Carbon/analysis , Environmental Monitoring/instrumentation , Nanotubes, Carbon/analysis , Nanotubes, Carbon/toxicity , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/toxicity , Dust/analysis , Environmental Monitoring/methods , Filtration/methods , Humans , Inhalation Exposure/analysis , Inhalation Exposure/prevention & control , Limit of Detection , Lung/drug effects , Microscopy, Electron, Scanning , Occupational Exposure/analysis , Particle Size , Respiratory Protective Devices/standards
2.
Anal Chim Acta ; 713: 79-85, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22200311

ABSTRACT

A method based on hollow fiber liquid phase microextraction (HF-LPME) for analysis of pinic acid and pinonic acid was developed and for the first time successfully applied to ambient aerosol samples. In this method, the aerosol samples were dissolved in 0.05 M H(2)SO(4) and the solution was extracted using three-phase HF-LPME where donor phase was 0.1 M (NH(4))(2)CO(3). Different parameters like type of organic solvent for membrane phase, extraction time and stirring speed etc. were optimized. Optimum extraction time was 4.5 h and optimum-stirring speed was found to be 900 rpm. We used 6-undecanone as organic phase along with tri-n-octylphosphine oxide (optimum TOPO contents was 15% w/v), which gave an enormous enrichment for both pinic and pinonic acid. Enrichment factors of 28,050 and 27,400 times were obtained for pinonic acid and pinic acid, respectively, that are the highest ever published. The extraction efficiency for pinic acid and pinonic acid were 68.5% and 70.1%, respectively. Very low limits of detection were obtained. Values of 1.0 ng L(-1) and 0.5 ng L(-1) in aqueous solutions, corresponding to 24 pg m(-3) and 12 pg m(-3) in aerosol samples were the limits of detections for pinonic acid and pinic acid, respectively. Both pinonic acid and pinic acid were found in all aerosol samples analyzed.


Subject(s)
Aerosols/chemistry , Liquid Phase Microextraction , Volatile Organic Compounds/chemistry , Gas Chromatography-Mass Spectrometry , Membranes, Artificial , Sulfuric Acids/chemistry , Time Factors , Volatile Organic Compounds/analysis
3.
Talanta ; 85(2): 919-26, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21726719

ABSTRACT

A method for determination of polycyclic aromatic hydrocarbons (PAHs) from aerosols was developed. Instead of conventionally used non-polar or slightly polar phenylmethylpolysiloxane column a highly polar, highly substituted, cyanopropyl column (VF-23 MS) was used for separation of PAHs. Based on hollow fiber micro-porous membrane liquid-liquid extraction (HF-MMLLE) a method was developed for sample clean up and pretreatment. An enrichment factor of 617-1022 was obtained with extraction efficiency 10.2-18.9% for different PAHs analyzed in this study. The optimized method was successfully applied to aerosol samples and limits of detection between 1.2 pg m(-3) and 180 pg m(-3) was obtained. Almost all PAHs were found in most of the aerosol samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...