Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Endocrinol Invest ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904913

ABSTRACT

BACKGROUND: People with metabolically healthy (MHO) and metabolically unhealthy obesity (MUO) differ for the presence or absence of cardio-metabolic complications, respectively. OBJECTIVE: Based on these differences, we are interested in deepening whether these obesity phenotypes could be linked to changes in microbiota and metabolome profiles. In this respect, the overt role of microbiota taxa composition and relative metabolic profiles is not completely understood. At this aim, biochemical and nutritional parameters, fecal microbiota, metabolome and SCFA compositions were inspected in patients with MHO and MUO under a restrictive diet regimen with a daily intake ranging from 800 to 1200 kcal. METHODS: Blood, fecal samples and food questionnaires were collected from healthy controls (HC), and an obese cohort composed of both MHO and MUO patients. Most impacting biochemical/anthropometric variables from an a priori sample stratification were detected by applying a robust statistics approach useful in lowering the background noise. Bacterial taxa and volatile metabolites were assessed by qPCR and gas chromatography coupled with mass spectrometry, respectively. A targeted GC-MS analyses on SCFAs was also performed. RESULTS: Instructed to follow a controlled and restricted daily calorie intake, MHO and MUO patients showed differences in metabolic, gut microbial and volatilome signatures. Our data revealed higher quantities of specific pro-inflammatory taxa (i.e., Desulfovibrio and Prevotella genera) and lower quantities of Clostridium coccoides group in MUO subset. Higher abundances in alkane, ketone, aldehyde, and indole VOC classes together with a lower amount of butanoic acid marked the faecal MUO metabolome. CONCLUSIONS: Compared to MHO, MUO subset symptom picture is featured by specific differences in gut pro-inflammatory taxa and metabolites that could have a role in the progression to metabolically unhealthy status and developing of obesity-related cardiometabolic diseases. The approach is suitable to better explain the crosstalk existing among dysmetabolism-related inflammation, nutrient intake, lifestyle, and gut dysbiosis.

2.
J Endocrinol Invest ; 46(11): 2213-2236, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37378828

ABSTRACT

BACKGROUND: Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE: This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. ß3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.

3.
J Endocrinol Invest ; 44(5): 921-941, 2021 May.
Article in English | MEDLINE | ID: mdl-33145726

ABSTRACT

The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses.


Subject(s)
Adipogenesis/physiology , Adipose Tissue , Lipogenesis/genetics , Obesity , Adipocytes/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Body Fat Distribution , Gene Expression Regulation , Humans , Insulin Resistance , Mesenchymal Stem Cells/metabolism , Obesity/immunology , Obesity/metabolism , Obesity/pathology
9.
Pediatr Med Chir ; 17(1): 89-90, 1995.
Article in Italian | MEDLINE | ID: mdl-7739937

ABSTRACT

A case of congenital pseudo-arthrosis of clavicle is reported and the peculiar clinical-radiological aspects, useful in the differential diagnostic with the much more common traumatic fracture caused by childbirth and the cleidocranial dysostosis are discussed.


Subject(s)
Clavicle/abnormalities , Pseudarthrosis/congenital , Age Factors , Diagnosis, Differential , Female , Humans , Infant , Pseudarthrosis/diagnosis , Pseudarthrosis/diagnostic imaging , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...