Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 98(2-3): 164-73, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16388947

ABSTRACT

It remains unclear why it has proven so difficult to identify androgen target genes in cultured Sertoli cells. Given the lack of useful endogenous reporter genes, we studied the androgen and glucocorticoid responsiveness of these cells by transfection with three different steroid-responsive reporter constructs. The constructs were driven by the tyrosine aminotransferase steroid-responsive region (TAT-GRE4x-Luc), the mouse mammary tumor virus promoter (MMTV-Luc) and the Pem homeobox gene proximal promoter respectively (Pem-Luc). These constructs can be activated either by both the glucocorticoid receptor (GR) and the androgen receptor (AR) (TAT-GRE4x-Luc and MMTV-Luc) or selectively by the AR (Pem-Luc). Despite high transfection efficiency (30-40%) none of the constructs could be activated by treatment of the Sertoli cells with testosterone, 5alpha-dihydrotestosterone or synthetic androgens. Even pretreatment with follicle-stimulating hormone to raise AR levels (from 31 up to 82fmol/mg protein) did not result in androgen responsiveness. In contrast, treatment with dexamethasone markedly stimulated TAT-GRE4x-Luc and MMTV-Luc activity. GR levels reached a value of 172fmol/mg protein in the cultured cells and both AR and GR displayed homogeneous distribution by immunocytochemical evaluation. Androgen responsiveness was restored and glucocorticoid responsiveness was increased by cotransfection with AR or GR expression constructs. Under cotransfection conditions, 1nM of testosterone (a concentration that is some 100 times lower than that estimated to be present in the testis) was sufficient to stimulate the TAT-GRE4x-Luc maximally. Our data indicate that cultured Sertoli cells respond better to glucocorticoids than to androgens and that one of the factors limiting androgen responsiveness is the availability of AR. Other factors limiting the transactivation capacity of the (endogenous) AR, however, cannot be excluded.


Subject(s)
Genes, Reporter/drug effects , Receptors, Androgen/metabolism , Receptors, Glucocorticoid/metabolism , Sertoli Cells/metabolism , Transfection/methods , Animals , Dexamethasone/metabolism , Dexamethasone/pharmacology , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Immunohistochemistry , Male , Mice , Promoter Regions, Genetic/drug effects , Receptors, Androgen/genetics , Receptors, Glucocorticoid/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sertoli Cells/drug effects , Testosterone/metabolism , Testosterone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...