Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Genes (Basel) ; 12(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34946894

ABSTRACT

This study evaluates signatures of selection in the evolution of the mitochondrial DNA of voles, subfamily Arvicolinae, during the colonization of subterranean environments. The comparative sequence analysis of mitochondrial protein-coding genes of eight subterranean vole species (Prometheomys schaposchnikowi, three species of the genus Ellobius: Ellobius talpinus, Ellobius fuscocapillus and Ellobius lutescens, two species of the genus Terricola: Terricola subterraneus and Terricola daghestanicus, Lasiopodomys mandarinus, and Hyperacrius fertilis) and their closest aboveground relatives was applied using codon-substitution models. The highest number of selection signatures was detected in genes ATP8 and CYTB. The relaxation of selection was observed in most mitochondrial DNA protein-coding genes for subterranean species. The largest amount of relaxed genes is discovered in mole voles (genus Ellobius). The number of selection signatures was found to be independent of the evolutionary age of the lineage but fits the degree of specialization to the subterranean niche. The common trends of selective pressures were observed among the evolutionary ancient and highly specialized subterranean rodent families and phylogenetically young lineages of voles. It suggests that the signatures of adaptation in individual mitochondrial protein-coding genes associated with the colonization of the subterranean niche may appear within a rather short evolutionary timespan.


Subject(s)
Adaptation, Physiological , Arvicolinae/genetics , Cytochromes b/genetics , Evolution, Molecular , Genome, Mitochondrial , Mitochondrial Proton-Translocating ATPases/genetics , Animals , Computational Biology/methods , Databases, Genetic , Phylogeny
2.
PLoS One ; 16(11): e0248198, 2021.
Article in English | MEDLINE | ID: mdl-34797834

ABSTRACT

Arvicolinae is one of the most impressive placental radiations with over 150 extant and numerous extinct species that emerged since the Miocene in the Northern Hemisphere. The phylogeny of Arvicolinae has been studied intensively for several decades using morphological and genetic methods. Here, we sequenced 30 new mitochondrial genomes to better understand the evolutionary relationships among the major tribes and genera within the subfamily. The phylogenetic and molecular dating analyses based on 11,391 bp concatenated alignment of protein-coding mitochondrial genes confirmed the monophyly of the subfamily. While Bayesian analysis provided a high resolution across the entire tree, Maximum Likelihood tree reconstruction showed weak support for the ordering of divergence and interrelationships of tribal level taxa within the most ancient radiation. Both the interrelationships among tribes Lagurini, Ellobiusini and Arvicolini, comprising the largest radiation and the position of the genus Dinaromys within it also remained unresolved. For the first time complex relationships between genus level taxa within the species-rich tribe Arvicolini received full resolution. Particularly Lemmiscus was robustly placed as sister to the snow voles Chionomys in the tribe Arvicolini in contrast with a long-held belief of its affinity with Lagurini. Molecular dating of the origin of Arvicolinae and early divergences obtained from the mitogenome data were consistent with fossil records. The mtDNA estimates for putative ancestors of the most genera within Arvicolini appeared to be much older than it was previously proposed in paleontological studies.


Subject(s)
Arvicolinae/genetics , Biological Evolution , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Phylogeny , Animals
3.
PeerJ ; 8: e10364, 2020.
Article in English | MEDLINE | ID: mdl-33240667

ABSTRACT

In this article, we present the nearly complete mitochondrial genome of the Subalpine Kashmir vole Hyperacrius fertilis (Arvicolinae, Cricetidae, Rodentia), assembled using data from Illumina next-generation sequencing (NGS) of the DNA from a century-old museum specimen. De novo assembly consisted of 16,341 bp and included all mitogenome protein-coding genes as well as 12S and 16S RNAs, tRNAs and D-loop. Using the alignment of protein-coding genes of 14 previously published Arvicolini tribe mitogenomes, seven Clethrionomyini mitogenomes, and also Ondatra and Dicrostonyx outgroups, we conducted phylogenetic reconstructions based on a dataset of 13 protein-coding genes (PCGs) under maximum likelihood and Bayesian inference. Phylogenetic analyses robustly supported the phylogenetic position of this species within the tribe Arvicolini. Among the Arvicolini, Hyperacrius represents one of the early-diverged lineages. This result of phylogenetic analysis altered the conventional view on phylogenetic relatedness between Hyperacrius and Alticola and prompted the revision of morphological characters underlying the former assumption. Morphological analysis performed here confirmed molecular data and provided additional evidence for taxonomic replacement of the genus Hyperacrius from the tribe Clethrionomyini to the tribe Arvicolini.

4.
Mitochondrial DNA B Resour ; 5(3): 2485-2487, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-33457837

ABSTRACT

The subterranean voles of the genus Ellobius are species of subfamily Arvicolinae well adapted to underground life. In this paper, we report the assemblies of complete mitochondrial genomes for three mole voles from genus Ellobius - northern mole vole Ellobius talpinus (16,376 bp), transcaucasian mole vole E. lutescens (16,540 bp), and southern mole vole E. fuscocapillus (16,388 bp). Each of three mitogenomes encode for 12S and 16S rRNAs, 22 tRNAs, 13 protein-coding genes, and D-loop in the characteristic arrangement of subfamily Arvicolinae (Rodentia: Cricetidae). This study verifies the evolutionary status of subgenera Bramus and Ellobius within the genus Ellobius at the molecular level. The mitochondrial genome would be a significant supplement for the Ellobius genetic background. The three Ellobius species formed a monophyletic group with the high bootstrap value (100%) in all examinations.

5.
Mar Pollut Bull ; 61(4-6): 247-53, 2010.
Article in English | MEDLINE | ID: mdl-20347100

ABSTRACT

A descriptive study of population structure, growth rates and shell morphometry was conducted on nine intertidal populations of the infaunal bivalve Cerastoderma edule in the Murmansk coast of the Barents Sea. Year-to-year population dynamics was analyzed during 2002-2006 on a tidal flat Dalniy Plaj (eastern Murmansk coast). The region constitutes the northern extremes of C. edule range where populations occupied the middle to low intertidal zone and were characterized by low densities. The distribution of age groups and unstable age structure across years in the cockle populations suggest irregular recruitment. Growth rates and shell morphometry showed little variation across the populations studied, and there were no gradient changes from the west to the east parts of Murmansk coast.


Subject(s)
Cardiidae/growth & development , Animals , Body Size , Cardiidae/anatomy & histology , Oceans and Seas , Population Dynamics , Russia , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL