Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218237

ABSTRACT

Currently, there is a clear tendency to incorporate natural ingredients into food and pharmaceutical formulations. Besides being well-accepted by consumers, these ingredients have less adverse side effects than their artificial counterparts. The pomegranate processing industry produces large quantities of by-products that are discarded as bio-residues, despite containing bioactive compounds. Accordingly, the epicarp of two pomegranate varieties (Mollar de Elche and Purple Queen) was tested as a potential source of bioactive compounds with food application. The phenolic profile was identified by HPLC-DAD-ESI/MS, revealing fourteen phenolic compounds in both varieties (Purple Queen showed also three anthocyanins), with punicalagin isomers as the major compounds. Nonetheless, Mollar de Elche presented greater antioxidant and antibacterial activities. Despite this result, Purple Queen was selected to be tested as a new natural colouring and functionalizing ingredient in a Brazilian pastry product. The incorporation of the selected extract maintained the nutritional profile and provided a higher antioxidant activity compared to the traditional product. In this way, this work confirmed the possible use of pomegranate epicarp as a natural ingredient in the food industry, conferring dyeing and functionalizing effects, and anticipating a possible valorisation of this bio-residue.


Subject(s)
Phenols/chemistry , Plant Extracts/pharmacology , Pomegranate/chemistry , Anti-Bacterial Agents/pharmacology , Brazil , Cell Death/drug effects , Colorimetry , Fatty Acids/analysis , Microbial Sensitivity Tests , Sugars/analysis , Thiobarbituric Acid Reactive Substances/metabolism
2.
Water Environ Res ; 82(9): 797-805, 2010.
Article in English | MEDLINE | ID: mdl-20942335

ABSTRACT

The degradation products of the macrolide antibiotic erythromycin A (ERY) arising from direct ozone attack and hydroxyl radical attack are presented for the first time. Ozone treatment was carried out by spiking ozone stock solutions to solutions containing ERY-ERY:O3 = 1:5 and 1:10 (M:M), while, in parallel, t-BuOH was used as a hydroxyl radical (*OH) scavenger. The advanced oxidation processes (AOPs) O3/UV, O3/H2O2, and UV/H2O2 were carried out to recognize and verify possible differences between their primary degradation products; the initial concentrations were ERY:O3 = 1:5 (M:M), ERY:O3:H202 = 1:5:5 (M:M:M), or ERY:H202 = 1:5 (M:M), respectively. Six degradation products were identified from ozonation-one originates from direct ozone attack on the tertiary amine group, while the others arise from radical ion attack, which might be formed during degradation of O3 in water. Fewer primary degradation products were observed arising from *OH-based treatments (AOP) than from ozonation, possibly because the reaction of *OH radicals is non-selective and typically is diffusion-controlled. Four degradation products were detected by *OH radical attacks; two of them already were observed during ozonation, with one as an oxidized ERY molecule and the other as a non-oxidized fragment of the ERY molecule.


Subject(s)
Erythromycin/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Molecular Structure , Oxidation-Reduction , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...