Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 22(4): 452-65, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23079656

ABSTRACT

D-type cyclins form complexes with cyclin-dependent kinases (CDK4/6) and promote cell cycle progression. Although cyclin D functions appear largely tissue specific, we demonstrate that cyclin D3 has unique functions in lymphocyte development and cannot be replaced by cyclin D2, which is also expressed during blood differentiation. We show that only combined deletion of p27(Kip1) and retinoblastoma tumor suppressor (Rb) is sufficient to rescue the development of Ccnd3(-/-) thymocytes. Furthermore, we show that a small molecule targeting the kinase function of cyclin D3:CDK4/6 inhibits both cell cycle entry in human T cell acute lymphoblastic leukemia (T-ALL) and disease progression in animal models of T-ALL. These studies identify unique functions for cyclin D3:CDK4/6 complexes and suggest potential therapeutic protocols for this devastating blood tumor.


Subject(s)
Cyclin D3/antagonists & inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Cyclin D2/physiology , Cyclin D3/physiology , Cyclin-Dependent Kinase 4/physiology , Cyclin-Dependent Kinase 6/physiology , Cyclin-Dependent Kinase Inhibitor p27/physiology , Humans , Lymphocytes/physiology , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Receptor, Notch1/physiology , Retinoblastoma Protein/physiology
2.
Proc Natl Acad Sci U S A ; 106(15): 6117-22, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19332797

ABSTRACT

Specificity of signaling kinases and phosphatases toward their targets is usually mediated by docking interactions with substrates and regulatory proteins. Here, we characterize the motifs involved in the physical and functional interaction of the phosphatase calcineurin with a group of modulators, the RCAN protein family. Mutation of key residues within the hydrophobic docking-cleft of the calcineurin catalytic domain impairs binding to all human RCAN proteins and to the calcineurin interacting proteins Cabin1 and AKAP79. A valine-rich region within the RCAN carboxyl region is essential for binding to the docking site in calcineurin. Although a peptide containing this sequence compromises NFAT signaling in living cells, it does not inhibit calcineurin catalytic activity directly. Instead, calcineurin catalytic activity is inhibited by a motif at the extreme C-terminal region of RCAN, which acts in cis with the docking motif. Our results therefore indicate that the inhibitory action of RCAN on calcineurin-NFAT signaling results not only from the inhibition of phosphatase activity but also from competition between NFAT and RCAN for binding to the same docking site in calcineurin. Thus, competition by substrates and modulators for a common docking site appears to be an essential mechanism in the regulation of Ca(2+)-calcineurin signaling.


Subject(s)
Calcineurin/chemistry , Calcineurin/metabolism , Muscle Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Calcineurin/genetics , Cell Line , Conserved Sequence , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Molecular Sequence Data , Muscle Proteins/chemistry , Muscle Proteins/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Structure, Secondary , Sequence Alignment , Signal Transduction , Substrate Specificity
3.
Biochem J ; 374(Pt 2): 567-75, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-12809556

ABSTRACT

Calcipressin 1 is an endogenous inhibitor of calcineurin, which is a serine/threonine phosphatase under the control of Ca(2+) and calmodulin. Calcipressin 1 is encoded by DSCR1, a gene on human chromosome 21 with seven exons, exons 1-4 are alternative first exons (isoforms 1-4). We show that calcipressin 1 isoform 1 has an N-terminal coding region longer than that previously described, and this generates a new polypeptide of 252 amino acids. This polypeptide is able to interact with calcineurin A and to inhibit NF-AT-mediated transcriptional activation. We demonstrate for the first time that endogenous calcipressin 1 exists as a complex together with the calcineurin A and B heterodimer. Calcipressin 1 is a phosphoprotein that increases its capacity to inhibit calcineurin when phosphorylated at the FLISPP motif, and this phosphorylation also controls the half-life of calcipressin 1 by accelerating its degradation. Additionally, we have also detected further phosphorylation sites outside the FLISPP motif and these contribute to the complex phosphorylation pattern of calcipressin 1. Taking all these results into consideration we suggest that phosphorylation of calcipressin 1 is involved in the regulation of the phosphatase activity of calcineurin and can therefore act as a modulator of calcineurin-dependent cellular pathways.


Subject(s)
Calcineurin Inhibitors , Muscle Proteins/metabolism , Amino Acid Motifs/genetics , Animals , CHO Cells , COS Cells , Calcineurin/metabolism , Chlorocebus aethiops , Codon/genetics , Cricetinae , DNA-Binding Proteins , Exons/genetics , Hemagglutinins/immunology , Hemagglutinins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Molecular Sequence Data , Molecular Weight , Muscle Proteins/genetics , Muscle Proteins/immunology , Muscle Proteins/physiology , Phosphorylation , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...