Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Signal Transduct Target Ther ; 8(1): 46, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717539

ABSTRACT

Meplazumab, a humanized CD147 antibody, has shown favourable safety and efficacy in our previous clinical studies. In DEFLECT (NCT04586153), 167 patients with severe COVID-19 were enroled and randomized to receive three dosages of meplazumab and a placebo. Meplazumab at 0.12 mg/kg, compared to the placebo group, showed clinical benefits in significantly reducing mortality by 83.6% (2.4% vs. 14.6%, p = 0.0150), increasing the proportion of patients alive and discharged without supplemental oxygen (82.9% vs. 70.7%, p = 0.0337) and increasing the proportion of patients who achieved sustained clinical improvement (41.5% vs. 31.7%). The response rate in the 0.2 mg/kg group was relatively increased by 16.0% compared with the placebo group (53.7% vs. 46.3%). Meplazumab also reduced the viral loads and multiple cytokine levels. Compare with the placebo group, the 0.3 mg/kg significantly increased the virus negative rate by 40.6% (p = 0.0363) and reduced IL-8 level (p = 0.0460); the 0.2 mg/kg increased the negative conversion rate by 36.9%, and reduced IL-4 (p = 0.0365) and IL-8 levels (p = 0.0484). In this study, the adverse events occurred at a comparable rate across the four groups, with no unexpected safety findings observed. In conclusion, meplazumab promoted COVID-19 convalescence and reduced mortality, viral load, and cytokine levels in severe COVID-19 population with good safety profile.


Subject(s)
COVID-19 , Humans , Adult , SARS-CoV-2 , Interleukin-8 , Cytokines
3.
Signal Transduct Target Ther ; 6(1): 194, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001849

ABSTRACT

Recent evidence suggests that CD147 serves as a novel receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Blocking CD147 via anti-CD147 antibody could suppress the in vitro SARS-CoV-2 replication. Meplazumab is a humanized anti-CD147 IgG2 monoclonal antibody, which may effectively prevent SARS-CoV-2 infection in coronavirus disease 2019 (COVID-19) patients. Here, we conducted a randomized, double-blinded, placebo-controlled phase 1 trial to evaluate the safety, tolerability, and pharmacokinetics of meplazumab in healthy subjects, and an open-labeled, concurrent controlled add-on exploratory phase 2 study to determine the efficacy in COVID-19 patients. In phase 1 study, 59 subjects were enrolled and assigned to eight cohorts, and no serious treatment-emergent adverse event (TEAE) or TEAE grade ≥3 was observed. The serum and peripheral blood Cmax and area under the curve showed non-linear pharmacokinetic characteristics. No obvious relation between the incidence or titer of positive anti-drug antibody and dosage was observed in each cohort. The biodistribution study indicated that meplazumab reached lung tissue and maintained >14 days stable with the lung tissue/cardiac blood-pool ratio ranging from 0.41 to 0.32. In the exploratory phase 2 study, 17 COVID-19 patients were enrolled, and 11 hospitalized patients were involved as concurrent control. The meplazumab treatment significantly improved the discharged (P = 0.005) and case severity (P = 0.021), and reduced the time to virus negative (P = 0.045) in comparison to the control group. These results show a sound safety and tolerance of meplazumab in healthy volunteers and suggest that meplazumab could accelerate the recovery of patients from COVID-19 pneumonia with a favorable safety profile.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 Drug Treatment , COVID-19/metabolism , Lung/metabolism , SARS-CoV-2/metabolism , Adolescent , Adult , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , COVID-19/pathology , Double-Blind Method , Female , Humans , Lung/pathology , Lung/virology , Male , Middle Aged
4.
Cell Metab ; 33(1): 160-173.e6, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33406400

ABSTRACT

CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-methylated to CD147-K234me2 by lysine methyltransferase 5A (KMT5A). The increase in KMT5A expression boosts the levels of CD147-K234me2, further promoting the interaction between CD147 and monocarboxylate transporter 4 (MCT4), which enhances the translocation of MCT4 from the cytoplasm to the membrane. Overexpression of CD147-K234me2 and KMT5A enhances glycolysis and lactate export in NSCLC cells. Clinical analysis shows that high CD147-K234me2 expression is significantly related to cancer progression and overall survival, and has prognostic significance in individuals with NSCLC, especially for those in the early stages. Our findings indicate that CD147-K234me2 plays a critical role in cancer metabolism, and it can be a highly promising therapeutic target for NSCLC.


Subject(s)
Basigin/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Lactic Acid/metabolism , Lung Neoplasms/metabolism , Oligopeptides/metabolism , Animals , Cell Line , Humans , Male , Methylation , Mice , Mice, Inbred BALB C , Mice, Nude
5.
Cell Mol Immunol ; 18(1): 171-181, 2021 01.
Article in English | MEDLINE | ID: mdl-31900457

ABSTRACT

Thymic involution during aging is a major cause of decreased T-cell production and reduced immunity. Here, we show that the loss of CD147 on T cells prevents thymic senescence, resulting in slowed shrinkage of the thymus with age and increased production of naive T cells. This phenotype is the result of slowing of the epithelial-mesenchymal transition (EMT) process in thymic epithelial cells (TECs), which eventually leads to reduced adipocyte accumulation. In an in vitro coculture system, we found that TGFß is an important factor in the EMT process in TECs and that it can reduce the expression of E-cadherin through p-Smad2/FoxC2 signaling. Moreover, CD147 on T cells can accelerate the decline in E-cadherin expression by interacting with Annexin A2 on TECs. In the presence of TGFß, Annexin A2 and E-cadherin colocalize on TECs. However, CD147 on T cells competitively binds to Annexin A2 on TECs, leading to the isolation of E-cadherin. Then, the isolated E-cadherin is easily phosphorylated by phosphorylated Src kinase, the phosphorylation of which was induced by TGFß, and finally, p-E-cadherin is degraded. Thus, in the thymus, the interaction between T cells and TECs contributes to thymic involution with age. In this study, we illuminate the mechanism underlying the triggering of the EMT process in TECs and show that inhibiting TGFß and/or CD147 may serve as a strategy to hinder age-related thymic involution.


Subject(s)
Aging , Epithelial Cells/physiology , Epithelial-Mesenchymal Transition , T-Lymphocytes/metabolism , Thymus Gland/physiology , Transforming Growth Factor beta/metabolism , Animals , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor-Like Protein Tyrosine Phosphatases, Class 3/physiology , Signal Transduction , T-Lymphocytes/immunology , Transforming Growth Factor beta/genetics
6.
Signal Transduct Target Ther ; 5(1): 283, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277466

ABSTRACT

In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.


Subject(s)
Basigin/genetics , COVID-19/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Basigin/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , Lung/immunology , Lung/pathology , Lung/virology , Mice , Pandemics , Protein Binding/immunology , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
7.
EBioMedicine ; 20: 98-108, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28571672

ABSTRACT

CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αß T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy.


Subject(s)
Basigin/genetics , Cell Lineage/genetics , Cellular Reprogramming/genetics , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , Animals , Female , Gene Deletion , Immunomodulation , Immunotherapy , Killer Cells, Natural/immunology , Melanoma, Experimental , Mice , Mice, Knockout , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Lymphocyte Subsets/immunology , Thymocytes/cytology , Thymocytes/immunology , Thymocytes/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Wnt Signaling Pathway
8.
Oncotarget ; 7(8): 9429-47, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26882566

ABSTRACT

CD147, a type I transmembrane glycoprotein, is highly expressed in various cancer types and plays important roles in tumor progression, especially by promoting the motility and invasion of hepatocellular carcinoma (HCC) cells. These crucial roles make CD147 an attractive target for therapeutic intervention in HCC, but no small-molecule inhibitors of CD147 have been developed to date. To identify a candidate inhibitor, we used a pharmacophore model derived from the structure of CD147 to virtually screen over 300,000 compounds. The 100 highest-ranked compounds were subjected to biological assays, and the most potent one, dubbed AC-73 (ID number: AN-465/42834501), was studied further. We confirmed that AC-73 targeted CD147 and further demonstrated it can specifically disrupt CD147 dimerization. Moreover, molecular docking and mutagenesis experiments showed that the possible binding sites of AC-73 on CD147 included Glu64 and Glu73 in the N-terminal IgC2 domain, which two residues are located in the dimer interface of CD147. Functional assays revealed that AC-73 inhibited the motility and invasion of typical HCC cells, but not HCC cells that lacked the CD147 gene, demonstrating on-target action. Further, AC-73 reduced HCC metastasis by suppressing matrix metalloproteinase (MMP)-2 via down-regulation of the CD147/ERK1/2/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, AC-73 attenuated progression in an orthotopic nude mouse model of liver metastasis, suggesting that AC-73 or its derivatives have potential for use in HCC intervention. We conclude that the novel small-molecule inhibitor AC-73 inhibits HCC mobility and invasion, probably by disrupting CD147 dimerization and thereby mainly suppressing the CD147/ERK1/2/STAT3/MMP-2 pathways, which are crucial for cancer progression.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Basigin/metabolism , Carcinoma, Hepatocellular/drug therapy , Cell Movement/drug effects , Drug Discovery/methods , Liver Neoplasms/drug therapy , Animals , Antineoplastic Agents/adverse effects , Basigin/drug effects , Binding Sites/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MAP Kinase Signaling System/drug effects , Male , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Nude , Molecular Docking Simulation , Neoplasm Invasiveness/pathology , STAT3 Transcription Factor/metabolism
9.
Biochim Biophys Acta ; 1842(9): 1770-82, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24932516

ABSTRACT

Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1ß, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis.


Subject(s)
Basigin/metabolism , Cell Differentiation , Macrophages/metabolism , Pulmonary Fibrosis/pathology , Th17 Cells/immunology , Animals , Antibiotics, Antineoplastic/toxicity , Basigin/chemistry , Basigin/genetics , Bleomycin/toxicity , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Cell Proliferation , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoenzyme Techniques , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...