Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Nanobiotechnology ; 21(1): 338, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735669

ABSTRACT

Photothermal therapy (PTT) is a highly clinical application promising cancer treatment strategy with safe, convenient surgical procedures and excellent therapeutic efficacy on superficial tumors. However, a single PTT is difficult to eliminate tumor cells completely, and tumor recurrence and metastasis are prone to occur in the later stage. Chemo-photothermal synergistic therapy can conquer the shortcomings by further killing residual tumor cells after PTT through systemic chemotherapy. Nevertheless, chemotherapy drugs' extreme toxicity is also a problematic issue to be solved, such as anthracycline-induced cardiotoxicity. Herein, we selected polydopamine nanoparticles (PDA) as the carrier of the chemotherapeutic drug doxorubicin (DOX) to construct a versatile PDA(DOX) nanoplatform for chemo-photothermal synergistic therapy against breast cancer and simultaneously attenuated DOX-induced cardiotoxicity (DIC). The excellent photothermal properties of PDA were used to achieve the thermal ablation of tumors. DOX carried out chemotherapy to kill residual and occult distant tumors. Furthermore, the PDA(DOX) nanoparticles significantly alleviate DIC, which benefits from PDA's excellent antioxidant enzyme activity. The experimental data of the chemotherapy groups showed that the results of the PDA(DOX) group were much better than the DOX group. This study not only effectively inhibits cancer but tactfully attenuates DIC, bringing a new perspective into synergistic therapy against breast cancer.


Subject(s)
Hyperthermia, Induced , Neoplasms , Humans , Photothermal Therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Doxorubicin/pharmacology , Anthracyclines , Antioxidants
2.
Opt Express ; 30(3): 4165-4178, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209659

ABSTRACT

A double-passage propagation model of partially coherent Laguerre-Gaussian (LG) vortex beams with orbital angular momentum (OAM) modes in turbulent atmosphere after scattering from Gaussian rough surfaces was formulated. Rough surface scattering had a weak effect on the spreading of a vortex beam in turbulent atmosphere. However, it severely influenced the phase on this beam, rapidly reducing the original OAM mode's relative intensity. The OAM spectrum information is more useful than the intensity information for rough surface object remote sensing. Additionally, by comparing the scattering intensity in monostatic and bistatic systems, the enhanced backscatter of vortex beams from Gaussian rough surfaces was verified.

3.
Nanoscale ; 13(45): 19085-19097, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34761764

ABSTRACT

Polypyrrole (PPy) nanoparticles have been widely studied in tumor photothermal therapy (PTT) for their significant photostability, good biocompatibility, and excellent photothermal performance. Herein, we report bovine serum albumin (BSA) stabilized PPy that were mineralized by MnO2 nanozyme on the surface (PPy@BSA-MnO2) to achieve synergistic photothermal and chemodynamic therapy (CDT) for breast cancer. In this multifunctional nanoplatform, the surface-loaded MnO2 undergoes a redox reaction with glutathione (GSH) to generate glutathione disulfide (GSSG) and Mn2+. Then, Mn2+ can convert H2O2 into a highly cytotoxic ˙OH to achieve chemodynamic therapy (CDT) and possess good magnetic resonance (MR) T1-weighted imaging capabilities to realize contrast imaging of the 4T1 tumor-bearing mouse models. In addition, PPy nanoparticles can efficiently convert near-infrared light energy into heat and achieve PTT. Most importantly, PPy@BSA-MnO2 nanoprobes have excellent in vitro 4T1 cell-killing effect and in vivo tumor-suppressive properties. The acute toxicity assessment results indicate that PPy@BSA-MnO2 nanoprobes have good biological safety. Therefore, the as-prepared multifunctional PPy@BSA-MnO2 nanoprobes possess excellent performance to promote MRI-guided PTT/CDT synergistic therapy for breast cancer treatment and have extensive clinical transformation and application prospects.


Subject(s)
Neoplasms , Polymers , Animals , Hydrogen Peroxide , Magnetic Resonance Imaging , Manganese Compounds , Mice , Oxides , Pyrroles , Theranostic Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL
...