Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(8)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37995377

ABSTRACT

In recent years, the synaptic properties of transistors have been extensively studied. Compared with liquid or organic material-based transistors, inorganic solid electrolyte-gated transistors have the advantage of better chemical stability. This study uses a simple, low-cost solution technology to prepare In2O3transistors gated by AlLiO solid electrolyte. The electrochemical performance of the device is achieved by forming a double electric layer and electrochemical doping, which can mimic basic functions of biological synapses, such as excitatory postsynaptic current, paired-pulse promotion, and spiking time-dependent plasticity. Furthermore, complex synaptic behaviors such as Pavlovian classical conditioning is successfully emulated. With a 95% identification accuracy, an artificial neural network based on transistors is built to recognize sign language and enable sign language interpretation. Additionally, the handwriting digit's identification accuracy is 94%. Even with various levels of Gaussian noise, the recognition rate is still above 84%. The above findings demonstrate the potential of In2O3/AlLiO TFT in shaping the next generation of artificial intelligence.

2.
ACS Appl Mater Interfaces ; 15(4): 5456-5465, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36662834

ABSTRACT

The synaptic properties of memristors have been widely studied. However, researchers are still committed to solving various challenges, including the study of highly reliable memristors with comprehensive synaptic functions and memristors that simulate highly complex neurological learning rules. In this work, we report a CeO2/Nb-SrTiO3 heterojunction memristor whose conductance could be gradually tuned under both positive and negative pulse trains. Due to the gradual conductance switching behavior and the high switching ratio (105), the CeO2/Nb-SrTiO3 heterojunction memristor could dutifully mimic biosynaptic functions, including excitatory/inhibitory postsynaptic current (EPSC/IPSC), paired-pulse facilitation and depression (PPF/PPD), spike amplitude-dependent plasticity (SADP), spike duration-dependent plasticity (SDDP), spike rate-dependent plasticity (SRDP), paired/triplet spiking-time-dependent plasticity (STDP), and Bienenstock-Cooper-Munro (BCM) rules. Moreover, a convolutional neural network based on the memristors is constructed to identify the electrocardiogram (ECG) data sets to realize the diagnosis of diseases with a recognition accuracy of 93%. Besides, the recognition accuracy of the handwriting digit reaches 96%. These studies broaden the research scope of high-level synaptic behavior and lay a foundation for the future full synaptic memristor networks.


Subject(s)
Neuronal Plasticity , Niobium , Neural Networks, Computer , Learning , Electrocardiography
SELECTION OF CITATIONS
SEARCH DETAIL
...