Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 271(Pt 2): 132548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782323

ABSTRACT

A new approach of fabricating α-linolenic acid emulsions with enhanced oxidative stability in vitro digestion was established, using covalent octenyl succinic anhydride starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes as emulsifiers. The physicochemical characteristics and surface morphology of emulsions were mainly characterized by rheological measurements, laser scanning microscope (CLSM) and cryo-scanning electron microscopy (Cryo-SEM). Results indicated that emulsions had dense interfacial layers and strong network structures. As a result, the stability and antioxidant ability of emulsions were improved significantly. In addition, the oxidative stability of emulsions in vitro gastrointestinal digestion was explored. Results showed that emulsions could maintain better oxidative stability owing to antioxidant activity of covalent OSAS-SP-EGCG complexes under gastrointestinal conditions. In particular, lipid hydroperoxide and malondialdehyde contents of emulsions prepared by 1:4 complexes were lower than 0.35 mmol/L and 20.5 nmol/mL, respectively, approximately half those of emulsions stabilized by OSAS (0.65 mmol/L and 39.5 nmol/mL). It was indicated that covalent OSAS-SP-EGCG complexes could effectively inhibit α-linolenic acid oxidation in emulsions during vitro gastrointestinal digestion. This work will provide a theoretical basis for the development of α-linolenic acid emulsions, which will help to broaden application of α-linolenic acid in food industry.


Subject(s)
Antioxidants , Digestion , Emulsions , Oxidation-Reduction , Starch , alpha-Linolenic Acid , Starch/chemistry , Starch/analogs & derivatives , Emulsions/chemistry , alpha-Linolenic Acid/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Soybean Proteins/chemistry , Gastrointestinal Tract/metabolism , Catechin/chemistry , Catechin/analogs & derivatives , Rheology
2.
Food Chem ; 446: 138878, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38432138

ABSTRACT

In this study, octenyl succinylated starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes were designed to enhance the physical and oxidative stability of α-linolenic acid emulsions. Formations of OSAS-SP-EGCG complexes were confirmed via particle size, ξ-potential, together with fourier transform infrared (FTIR). A mixing ratio of 1:2 for OSAS to SP-EGCG resulted in ternary complexes with the highest contact angle (59.69°), indicating the hydrophobicity. Furthermore, the characteristics of α-linolenic acid emulsions (oil phase volume fractions (φ) of 10% and 20%) stabilized by OSAS-SP-EGCG complexes were investigated, including particle size, ξ-potential, emulsion stability, oxidative stability, and microstructure. These results revealed exceptional physical stability together with enhanced oxidative stability for these emulsions. Particularly, emulsions utilizing complexes having a 1:2 OSAS to SP-EGCG ratio exhibited superior emulsion stability. These findings provide theoretical support to the development of emulsions containing high levels of α-linolenic acid and for the broader application of α-linolenic acid in food products.


Subject(s)
Antioxidants , Catechin/analogs & derivatives , Sleep Apnea, Obstructive , Humans , Emulsions/chemistry , Antioxidants/chemistry , alpha-Linolenic Acid , Starch/chemistry , Soybean Proteins , Particle Size
3.
Front Nutr ; 10: 1093250, 2023.
Article in English | MEDLINE | ID: mdl-36845044

ABSTRACT

The present study aimed to investigate the effects of octenyl succinic anhydride modified starch (OSAS) on soy protein (SP)-(-)-epigallocatechin-3-gallate (EGCG) binary covalently linked complexes. Mean diameters of OSAS-SP-EGCG complexes decreased from 379.6 ± 54.9 nm to 272.7 ± 47.7 nm as the OSAS-to-SP-EGCG ratio changed from 1:2 to 4:1, while ζ-potential decreased from -19.1 ± 0.8 mV to -13.7 ± 1.2 mV. Fourier transform infrared spectroscopy results revealed that the characteristic peaks at 1725 cm-1 and 1569 cm-1 for OSAS disappeared in the OSAS-SP-EGCG complexes, indicating an interaction between OSAS and SP-EGCG complexes. X-ray diffraction analysis showed that with the increase of OSAS content, the diffraction peak at approximately 8.0° decreased from 8.22° to 7.74°, implying that the structures of OSAS and SP-EGCG complexes were rearranged after forming into OSAS-SP-EGCG complexes. The contact angle of the OSAS-SP-EGCG complexes significantly increased from 59.1° to 72.1° with the addition of OSAS increased, revealing that the addition of OSAS improved hydrophobicity of the SP-EGCG complexes. Transmission electron microscopy images revealed that the individual OSAS-SP-EGCG complexes became smaller but stuck together to form large fragments, which was different from the morphology of OSAS and SP-EGCG complexes. Thus, the OSAS-SP-EGCG complexes developed in this study may be effective emulsifiers for improving the stability of emulsion systems in the food industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...