Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Med Sci ; 16(3): 692-698, 2020.
Article in English | MEDLINE | ID: mdl-32399119

ABSTRACT

INTRODUCTION: The purpose of this study was to investigate the correlation between sperm mitochondrial NADH dehydrogenase subunit 5 (ND5) and NADH dehydrogenase subunit 6 (ND6) gene variations and total fertilisation failure (TFF). MATERIAL AND METHODS: A total of 232 sperm samples at the fresh in vitro fertilisation (IVF) cycle or the half-intracytoplasmic sperm injection (ICSI) cycle were collected for this retrospective controlled study on Han Chinese people between July 2011 and April 2014. Of the 232 total samples, 45 were from the IVF-TFF group and 187 were from couples with normal fertilisation (fertilisation rate > 50%). The mitochondrial ND5 and ND6 gene variations and sperm haplotypes were confirmed using nested PCR and DNA sequencing. RESULTS: Ten homozygous variations were newly discovered, namely C12417T, T12441A, C12543A, C13650A, C13765A, T13769C, C13775T, A13776G, C13785A and C13845T. The gene variation rates of six sites, C12417T, C13650A, C13765A, T13769C, C13785A and C13845T, in the TFF group were significantly higher than those in the control group (p < 0.05). There were 231 heterozygous variations discovered; however, only nine heterozygous sites (12441, 12561, 12735, 13164, 13743, 13812, 13928, 14172 and 14368) had significantly higher gene variation rates than those in the control group (p < 0.05). In addition, the results showed that haplogroup C did not affect TFF (p > 0.05), and the fertilisation failure rates of haplogroup R and haplogroup D4a were both higher than those in the control group (p < 0.05). CONCLUSIONS: Our results suggested that the ND5 and ND6 gene variations are correlated with TFF. Furthermore, this study indicated that haplogroup R and haplogroup D4a might be risk factors for TFF.

2.
Reprod Biol Endocrinol ; 18(1): 16, 2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32113479

ABSTRACT

BACKGROUND: To investigate the effectiveness of the GnRH-a ultra-long protocol, GnRH-a long protocol, and GnRH-a short protocol used in in vitro fertilization-embryo transfer (IVF-ET) in infertile women with endometriosis. METHODS: We searched PubMed, Embase, Web of Science, Cochrane Library, Elsevier Science Direct, OA Library, Google Scholar, China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform, China Science and Technology Journal database, and the China Biology Medicine disc for randomized controlled trials (RCTs) and observational studies (non-RCTs) to evaluate the efficacy of the GnRH-a ultra-long protocol, GnRH-a long protocol, and GnRH-a short protocol in IVF-ET in infertile patients with endometriosis. RESULTS: A total of 21 studies in compliance with the standard literature were included, and RCT and non-RCT studies were analyzed separately. This meta-analysis showed that the GnRH-a ultra-long protocol could improve the clinical pregnancy rate of infertile patients in RCT studies, especially in patients with stages III-IV endometriosis (RR = 2.04, 95% CI: 1.37~3.04, P < 0.05). However, subgroup analysis found the different down-regulation protocols provided no significant difference in improving clinical outcomes in patients with endometriosis in the non-RCT studies. CONCLUSION: This study suggests that the GnRH-a ultra-long protocol can improve the clinical pregnancy rate of the patients with stages III-IV endometriosis in RCT studies. Although it is generally believed that the results of RCT are more reliable, the conclusions of the non-RCT studies cannot be easily neglect, which let us draw conclusions more cautious.


Subject(s)
Embryo Transfer/methods , Endometriosis/physiopathology , Fertilization in Vitro/methods , Infertility, Female/physiopathology , Ovulation Induction/methods , Down-Regulation , Female , Gonadotropin-Releasing Hormone/administration & dosage , Gonadotropin-Releasing Hormone/metabolism , Humans , Pregnancy , Pregnancy Rate
3.
Reproduction ; 154(3): 229-236, 2017 09.
Article in English | MEDLINE | ID: mdl-28611112

ABSTRACT

Leydig cells are essential for male reproductive development throughout life. Production of androgens as well as intermediate steroids is tightly regulated. Although microRNAs (miRNAs) are suggested to play important roles in spermatogenesis, little is currently known regarding the regulation of steroidogenesis by miRNAs in Leydig cells. Here, we found that miR-150 was predominantly expressed in Leydig cells within mouse testis. Therefore, we determined steroidogenesis of the Leydig cells in which miR-150 was knocked down or overexpressed using miR-150 antagomir and agomir, respectively. Compared with negative control group, a significant increase of STAR expression was observed in miR-150 antagomir-treated Leydig cells. Conversely, STAR expression was significantly reduced in miR-150 agomir-transfected Leydig cells. Production of sex-steroid precursors and testosterone of Leydig cells was also negatively controlled by miR-150. We further identified Star as a target of miR-150 using luciferase reporter assay. Finally, we confirmed that miR-150 was necessary for steroidogenesis and spermatogenesis in vivo via intratesticular injection of miR-150 antagomir or agomir. Taken together, our studies suggest that miR-150 negatively regulates the expression of STAR and steroidogenesis of Leydig cells in mice.


Subject(s)
Gene Expression Regulation , Leydig Cells/metabolism , MicroRNAs/genetics , Phosphoproteins/metabolism , Spermatogenesis/physiology , Steroids/biosynthesis , Testis/metabolism , Animals , Cells, Cultured , Leydig Cells/cytology , Male , Mice , Mice, Inbred C57BL , Phosphoproteins/genetics , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...