Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(43): 49026-49034, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36259783

ABSTRACT

This work demonstrates a mixed-dimensional piezoelectric-gated transistor in the microscale that could be used as a millinewton force sensor. The force-sensing transistor consists of 1D piezoelectric zinc oxide (ZnO) nanorods (NRs) as the gate control and multilayer tungsten diselenide (WSe2) as the transistor channel. The applied mechanical force on piezoelectric NRs can induce a drain-source current change (ΔIds) on the WSe2 channel. The different doping types of the WSe2 channel have been found to lead to different directions of ΔIds. The pressure from the calibration weight of 5 g has been observed to result in an ∼30% Ids change for ZnO NRs on the p-type doped WSe2 device and an ∼-10% Ids change for the device with an n-type doped WSe2. The outcome of this work would be useful for applications in future human-machine interfaces and smart biomedical tools.

2.
Nanotechnology ; 32(45)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34340225

ABSTRACT

In this work, we present a novel force-sensing device with zinc oxide nanorods (ZnO NRs) integrated with a metal-oxide-semiconductor (MOS) capacitor and encapsulated with Kapton tape. The details of the fabrication process and working principle of the integrated ZnO NRs-MOS capacitor as a force sensor and nanogenerator have been discussed. The fabricated ZnO-MOS device is tested for both the open-circuit and resistor-connected mode. For an input force in the range of 1-32 N, the open-circuit output voltage of the device is measured to be in the range of 60-100 mV for different device configurations. In the resistor-connected mode, the maximum output power of 0.6 pW is obtained with a 1 MΩ external resistor and input force of 8 N. In addition, the influence of different seed layers (Ag and ZnO) and the patterning geometry of the ZnO nanorods on the output voltage of ZnO-MOS device have been investigated by experiments. An equivalent circuit model of the device has been developed to study the influence of the geometry of ZnO NRs and Kapton tape on the ZnO-MOS device voltage output. This study could be an example of integrating piezoelectric nanomaterials on traditional electronic devices and could inspire novel designs and fabrication methods for nanoscale self-powered force sensors and nanogenerators.

3.
Nanoscale Adv ; 2(7): 2814-2823, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-36132407

ABSTRACT

In this study, ZnO nanowires with diameters ranging from 50 nm to 500 nm have been synthesized hydrothermally on Ag and ZnO seed layers deposited by electron beam evaporation. ZnO nanowires grown on hetero and homo interfaces have been studied by comparing the growth characteristics of (a) ZnO nanowires on the Ag seed layer and (b) ZnO nanowires grown on the ZnO seed layer, respectively. The surface morphology of the as-evaporated seed layers before the nanowire growth has been investigated. Electron backscatter diffraction (EBSD) has been employed to examine the crystallinity of ZnO nanowires. In addition, the integrity of the Ag-ZnO heterointerface has been investigated using high-resolution transmission electron microscopy (HR-TEM). The length, diameter, density, and alignment of nanowires grown on Ag and ZnO seed layers have been studied as a function of growth time from 0.5 hours to 18 hours and precursor concentration from 5 mM to 18 mM. Furthermore, for both the Ag-ZnO nanowire heterostructure and ZnO-ZnO nanowire homostructure, the role of defects in the optical properties in the wavelength range of 517 nm to 900 nm has been studied using photoluminescence (PL) spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...