Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Ultrason Sonochem ; 98: 106485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37352730

ABSTRACT

The carbonous-based nanocomposites of CoCr layered double hydroxide (LDH) with graphene oxide (GO) and reduced graphene oxide (rGO) were prepared. The successful synthesis of the CoCr LDH in hydrotalcite crystalline structure was deduced from the pattern obtained from X-ray diffraction, and the chemical composition of its surface was checked by X-ray photoelectron spectroscopy. The prosperous decorating of LDH on the sheets of rGO and GO was authenticated by the energy dispersive X-ray spectroscopy analysis and micrographs of scanning electron and transmission electron microscopy. The photo-assisted sonocatalytic activity of the prepared nanocomposites was appraised for the decomposition of dimethyl phthalate (DMP) as a plasticizer. The highest decomposition efficiency of 100% was obtained in the existence of CoCr LDH/rGO nanocomposite (0.5 g/L) during 20 min of reaction time via photo-assisted sonocatalysis. The rGO improved the catalytic activity of the CoCr LDH by increasing the specific surface area from 1.2 m2/g to 4.5 m2/g and reducing the band gap from 1.7 eV to 1.3 eV. Moreover, the results of the colony-forming unit method endorsed antibacterial property improvement of the CoCr LDH via hybridizing with rGO. The results of this research provide an optimistic perspective for applying carbonous-based nanocomposites of CoCr LDH as a novel catalyst with antibacterial properties in photo-assisted sonocatalytic processes.

2.
Ultrason Sonochem ; 95: 106358, 2023 May.
Article in English | MEDLINE | ID: mdl-36913781

ABSTRACT

This study is the first to explore the possibility of utilizing CuCr LDH decorated on reduced graphene oxide (rGO) and graphene oxide (GO) as sonophotocatalysts for the degradation of dimethyl phthalate (DMP). CuCr LDH and its nanocomposites were successfully fabricated and characterized. Scanning electron microscopy (SEM) along with high-resolution transmission electron microscope (HRTEM) both evidenced the formation of randomly oriented nanosheet structures of CuCr LDH coupled with thin and folded sheets of GO and rGO. The impact of diverse processes on the degradation efficiency of DMP in the presence of the so-prepared catalysts was compared. Benefiting from the low bandgap and high specific surface area, the as-obtained CuCr LDH/rGO represented outstanding catalytic activity (100 %) toward 15 mg L-1 of DMP within 30 min when subjected to light and ultrasonic irradiations simultaneously. Radical quenching experiments and visual spectrophotometry using an O-phenylenediamine revealed the crucial role of hydroxyl radicals compared to holes and superoxide radicals. Overall, outcomes disclosed that CuCr LDH/rGO is a stable and proper sonophotocatalyst for environmental remediation.

3.
Chemosphere ; 314: 137750, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608493

ABSTRACT

Landfill leachate treatment involved with the membrane bioreactor (MBR) combined with membrane treatment via nanofiltration (NF) and/or reverse osmosis (RO) is widely used in Turkey. This treatment produces landfill leachate membrane concentrates (LLMCs) with an undesirably high concentration of contaminants. In the study, two different nanofiltration concentrates of leachate were coagulated. Coagulant dosages from 0.10 to 5.0 g of Me3+/L (Me3+: Al3+ or Fe3+), and the pH values ranged from 4.0 to 8.0 and 3.0-9.0 for Al-based and Fe-based coagulants, respectively. The most efficient pH values were 5.0 and 4.0 for Al3+ and Fe3+, respectively. These pH values are lower than those known to be effective in coagulants. The reason for this is the presence of humic substances in the wastewater. The cost of Fe2(SO4)3.xH2O was the lowest than other coagulants at the end of the cost analyses obtained from Istanbul region landfill leachate NF concentrate (NFCL-1) and Kocaeli region landfill leachate NF concentrate (NFCL-2). Under optimum conditions, the costs for NFCL-1 and NFCL-2 were calculated as 0.55 and 0.46 $/removed kg COD, respectively.


Subject(s)
Iron , Water Pollutants, Chemical , Iron/chemistry , Water Pollutants, Chemical/analysis , Aluminum , Flocculation , Filtration
4.
Chemosphere ; 307(Pt 3): 135954, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963383

ABSTRACT

This study compares the efficiencies of active (Ti/TiO2-RuO2-IrO2 (TIR)) and inactive (Ni/Boron Doped Diamond (BDD)) anodes in terms of pollutant treatment and by-product formation in pretreated (chemical coagulation) landfill leachate nanofiltration membrane concentrate (PLNC). PLNC has high chemical oxygen demand (COD:4900 mg/L), total organic carbon (TOC: 1874 mg/L), total Kjeldahl nitrogen (TKN: 520 mg/L), ammonium nitrogen (NH3-N: 21.35 mg/L), chloride (5700 mg/L) and sulfate (9000 mg/L - due to coagulant type). The parameters of COD, TOC, NH3-N, TKN, free and combined chlorine species, halogenated organic compounds (HOCs), adsorbable organic halogens (AOX), and nitrate at different current density (J: 111-555 A/m2) and initial pH (pHi:3.5-7) were compared for both anodes. The removal efficiencies at the optimum conditions (pHi 5.5, 333 A/m2 and 8 h) were obtained as 86.4% COD, 77.4% TOC, 93.4% TKN, 94.4% NH3-N with BDD and 34.3% COD, 27.3% TOC, 93.7% TKN, 97.4% NH3-N with TIR. According to gas chromatography-mass spectrometry (GC-MS) results obtained under optimum conditions, haloalkane/alkene, halonitroalkane, halonitrile, haloketone, haloalcohols, haloacids, haloaldehydes, haloamines/amides on both electrodes were detected as species of HOCs. In addition, the highest nitrate concentration was observed at the TIR anode, while the highest AOX concentration was observed at the BDD anode.


Subject(s)
Ammonium Compounds , Environmental Pollutants , Water Pollutants, Chemical , Alkenes , Amides , Ammonium Compounds/analysis , Boron/chemistry , Chlorides , Chlorine/analysis , Diamond/chemistry , Electrodes , Environmental Pollutants/analysis , Nitrates/chemistry , Nitrogen/analysis , Oxidation-Reduction , Sulfates , Water Pollutants, Chemical/analysis
5.
Environ Res ; 214(Pt 1): 113788, 2022 11.
Article in English | MEDLINE | ID: mdl-35793723

ABSTRACT

Highly efficient and durable catalysts for wastewater treatment are urgently required to tackle critical environmental issues. In this regard, NiCr LDH (NC), NiCr LDH-GO (NC-GO), and NiCr LDH-rGO (NC-rGO) nanocomposites were synthesized. The results of XRD, EDX, and FTIR analyses not only explored the crystallographic and chemical structures of catalysts but also confirmed the successful synthesis. Further morphological, physical, chemical, and optical characteristics of the catalysts were evaluated more by SEM, HRTEM, BET, DRS, and XPS techniques. The as-synthesized catalysts were used for the efficient mineralization of rifadin under 50 W LED visible light irradiation and the ultrasonic power of 150 W. Amongst, 0.75 g L-1 of NC-rGO demonstrated high sonophotocatalytic efficiency (88%) in natural pH (pH = 8) of 15 mg L-1 of rifadin. The introduced system is also powerful for the decontamination of pharmaceutical-containing wastewater as well as other refractory antibiotics. Moreover, the radical trapping experiments demonstrated that the main reactive species involved in the degradation of rifadin are •OH, h+, and O2•-. The possible intermediates were thoroughly investigated using GCMS analysis. Also, NC-rGO demonstrated superior antibacterial activity in comparison with NC, NC-GO samples.


Subject(s)
Graphite , Anti-Bacterial Agents , Catalysis , Hydroxides , Rifampin
6.
Chemosphere ; 306: 135539, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35779686

ABSTRACT

Printing and packaging process wastewater (PPPW) with high flow rates causes severe damage to the environment due to high organic pollution (3830.0 mg O2/L of COD and 813.6 mg/L of TOC) and turbidity (9110 NTU). This study examined the efficiencies of coagulation, Fenton, and photo-Fenton procedures, and their combinations in the treatment of PPPW. The three inorganic salts (FeCl3, Al2(SO4)3, and Fe2(SO4)3) were used in a wide range of pH (2.5-10) as a coagulant, and FeCl3 was chosen as the optimum coagulant. The 71.3% of TOC removal and the decreasing of turbidity up to 5.8 NTU were obtained at 0.5 g/L FeCl3 and pH of 6.0. Then, Fenton and photo-Fenton processes were applied to the effluent of the coagulation process. The Fenton process engaged the TOC removal efficiencies up to 85.2% in the presence of 7.350 g/L iron catalysts and 36.0 mL/L H2O2. The combined coagulation and Fenton process is a promising way to decrease the COD up to 119 mg O2/L, meeting the wastewater discharge standards of COD (200 mg O2/L) in Turkey. However, adding UV sources to the Fenton process showed a little bit of engagement (only %1.4 extra removal). When evaluated for PPPW, it is seen that the usage of combined coagulation and the Fenton process is an important treatment alternative. Furthermore, Zeta potential measurements and size exclusion chromatography were used to understand the removal mechanism.


Subject(s)
Printing , Product Packaging , Wastewater , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Industrial Waste/analysis , Oxidation-Reduction , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis
7.
Chemosphere ; 287(Pt 4): 132370, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34592209

ABSTRACT

The aim of this study is to produce an electrode that can be used in H2O2 production and Electro-Fenton (EF) process by an effective, cheap, and easy method. For this reason, a superhydrophobic electrode with a higher PTFE ratio and high thickness was produced with a simple press. The produced electrode was used in the production of H2O2 and mineralization of Atrazine. First, the effect of pH, cathode voltage, and operation time on H2O2 production was evaluated. The maximum H2O2 concentration (409 mg/L), the highest current efficiency (99.80%), and the lowest electrical energy consumption (3.16 kWh/kg) were obtained at 0.8 V, 7.0 of pH, and 120 min, and the stability of the electrode was evaluated up to 720 min. Then, the effects of the operational conditions (pH, cathode voltage, operating time, and catalyst concentration) in electro-Fenton were evaluated. The fastest degradation of Atrazine (>99%) was obtained at 2.0 V, 3.0 of pH, and 0.3 mM of Fe2+ in 15 min. In the final part of the study, the degradation intermediates were identified, and the characterization of the electrode was evaluated by SEM, XRD, FT-IR, tensiometer, potentiostat, and elemental analyzer.


Subject(s)
Atrazine , Water Pollutants, Chemical , Carbon , Electrodes , Hydrogen Peroxide , Oxidation-Reduction , Oxygen , Soot , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 286(Pt 2): 131740, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34352538

ABSTRACT

Herein, ZnCr layered double hydroxide (ZnCr LDH), and its nanocomposites with GO and rGO were synthesized using the co-precipitation method. The samples were characterized using XRD, FT-IR, SEM, TEM, BET, and XPS techniques. The sonophotocatalytic activity of the ZnCr LDH, ZnCr LDH/GO, and ZnCr LDH/rGO was investigated via the degradation of rifampicin (RIF) in the ultrasonic bath under visible light irradiation. The synergy index of more than 1 determined for ZnCr LDH/rGO indicated the positive interaction of sonocatalysis and photocatalysis resulted by hybridizing the LDH nanosheets with rGO. The maximum sonophotocatalytic degradation efficiency of 87.3% was achieved in the presence of ZnCr LDH/rGO nanocomposite with the concentration of 1.5 g L-1 for degradation of RIF with an initial concentration of 15 mg L-1 within 60 min sonication under visible light irradiation. The addition of different scavengers indicated that hydroxyl radicals, superoxide anion radicals, and the generated holes played a dominant role in the degradation of the pollutant molecules. A possible degradation mechanism was suggested based on the intermediates. The antibacterial tests confirmed the higher antibacterial activity of ZnCr LDH/GO compared with ZnCr LDH and ZnCr LDH/rGO against Gram-positive Staphylococcus aureus.


Subject(s)
Graphite , Nanocomposites , Anti-Bacterial Agents , Hydroxides , Rifampin , Spectroscopy, Fourier Transform Infrared
9.
Ultrason Sonochem ; 82: 105875, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34922153

ABSTRACT

In this study, ZnCr layered double hydroxide (LDH), ZnCr LDH/carbon nanotube (CNT), and ZnCr LDH/Biochar (BC) were synthesized and characterized by various analyses. The successful synthesis and the great crystallinity of the samples were consented by XRD analysis. SEM and TEM were applied to study the morphology of the synthesized samples. The simultaneous presence of C, Zn, and Cr elements was well confirmed by EDX and dot mapping analyses demonstrating the successful preparation of nanocomposites. According to the BET analysis, ZnCr LDH nanocomposites with BC and CNT had more specific surface area compared to ZnCr LDH alone. The catalytic performances of the samples were determined for the degradation of rifampicin (RF). The degradation efficiency of the sonophotocatalytic process in the presence of 0.6 g L-1 of ZnCr LDH/BC toward 15 mg L-1 of RF under 150 W ultrasound and visible light irradiation was found to be about 100% within 40 min. The influence of the reactive species on the sonophotocatalytic process was assessed via the addition of different scavengers (para-benzoquinone (p-BQ), formic acid (FA), isopropyl alcohol (IPA)), and enhancers (hydrogen peroxide and potassium persulfate). The GC-MS analysis was carried out and eleven by-products during the RF decomposition were detected.


Subject(s)
Nanotubes, Carbon , Charcoal , Chromium , Hydroxides , Rifampin , Ultrasonics , Zinc
10.
Environ Monit Assess ; 189(9): 438, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28785883

ABSTRACT

The removal of some pollutants in the Sakarya River was investigated in this study. Sakarya River located in Turkey flows from the northeast of Afyonkarahisar City to the Black Sea. Nineteen different micropollutants including trihalomethanes (THMs), haloacetic acids (HAAs), endocrine disrupting compound (EDC) and pharmaceuticals personal care product (PPCP) groups, and water quality parameters such as dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), hardness, and conductivity values were examined. To remove the micropollutants and improve the water quality, the treatment was performed with ozone, microfiltration (MF), and ultra-filtration (UF) membranes. The highest treatment efficiency was obtained with 1 mg/L ozone dosage and UP005 UF membrane. The trihalomethan formation potential (THMFP) and haloacetic acid formation potential (HAAFP) decreased with ozone + membrane at a concentration of 79 and 75%, respectively. After the treatment with ozone + membrane, the concentration of the micropollutants in the EDC and PPCP group remained below the detection limit. It was found that by using only membrane and only ozone, the maximum DOC removal efficiency achieved was 46 and 18%, respectively; and with ozone + membrane, this efficiency increased up to 82%. The results from the High-Pressure Size Exclusion Chromatography (HPSEC) analyses pointed that the substances with high molecular weight were converted into substances with low molecular weight after the treatment. The Fourier Transform Infrared (FTIR) analysis results showed that the aromatic and aliphatic functional groups in water changed after the treatment with ozone and that the peak values decreased more after the ozone + membrane treatment.


Subject(s)
Ozone/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Black Sea , Cities , Endocrine Disruptors/analysis , Environmental Monitoring , Filtration/methods , Fresh Water , Ozone/analysis , Rivers , Trihalomethanes/analysis , Turkey , Water Quality
11.
Ecotoxicol Environ Saf ; 145: 184-192, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28734221

ABSTRACT

The objective of this study was to investigate the removal efficiencies of the electrochemical treatment systems as an alternative for the treatment of cardboard plant wastewater (CPW). In accordance with this purpose, CPW was treated by electrocoagulation (EC) with Al electrodes and the effects of current density (CD), operating time (t), and initial pH (pHi) were investigated. The results showed that EC at optimum treatment conditions (CD: 7.5mA/cm2, pHi: 7.0 and t: 60min) have limited removal efficiencies for total organic carbon (TOC; 17.1%) and chemical oxygen demand (COD, 14.2%), on the contrary of turbidity (98.7%). Due to the low TOC and COD removal efficiencies, a secondary treatment was needed and the electrocoagulated effluent was subjected to electrooxidation (EO) by using a boron doped diamond (BDD) electrode for investigating the effect of CD, t, pHi and electrolyte concentration (Ce). Higher TOC (83.7%) and COD (82.9%) removal efficiencies were obtained by EO under the optimum treatment conditions (CD: 100mA/cm2, pHi: 7.2, Ce: 5.0g/L Na2SO4 and t: 180min). In addition, a toxicity test was carried out to the raw and treated wastewater under the optimum operating conditions. This study demonstrated that the combination of EC and EO have a satisfactory potential for real industrial wastewater with a high organic content, suspended solids and toxicity.


Subject(s)
Electrochemical Techniques/methods , Industrial Waste/analysis , Wastewater/chemistry , Wastewater/toxicity , Water Purification/methods , Aliivibrio fischeri/drug effects , Biological Oxygen Demand Analysis , Boron , Electrodes , Flocculation , Hydrogen-Ion Concentration , Toxicity Tests
12.
Water Sci Technol ; 75(3-4): 619-628, 2017 02.
Article in English | MEDLINE | ID: mdl-28192356

ABSTRACT

This paper deals with finding optimum reaction conditions for wet air oxidation (WAO) of malathion aqueous solution, by Response Surface Methodology. Reaction conditions, which affect the removal efficiencies most during the non-catalytic WAO system, are: temperature (60-120 °C), applied pressure (20-40 bar), the pH value (3-7), and reaction time (0-120 min). Those were chosen as independent parameters of the model. The interactions between parameters were evaluated by Box-Behnken and the quadratic model fitted very well with the experimental data (29 runs). A higher value of R2 and adjusted R2 (>0.91) demonstrated that the model could explain the results successfully. As a result, optimum removal efficiency (97.8%) was obtained at pH 5, 20 bars of pressure, 116 °C, and 96 min. These results showed that Box-Behnken is a suitable design to optimize operating conditions and removal efficiency for non-catalytic WAO process. The EC20 value of raw wastewater was measured as 35.40% for malathion (20 mg/L). After the treatment, no toxicity was observed at the optimum reaction conditions. The results show that the WAO is an efficient treatment system for malathion degradation and has the ability of converting malathion to the non-toxic forms.


Subject(s)
Malathion/analysis , Pesticides/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Air , Aliivibrio fischeri/drug effects , Malathion/toxicity , Models, Theoretical , Oxidation-Reduction , Pesticides/toxicity , Temperature , Toxicity Tests , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...