Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
ACS Infect Dis ; 10(5): 1561-1575, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38577994

ABSTRACT

DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from Mycobacterium tuberculosis (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme. One of these inhibitors showed a favorable pharmacokinetic profile and demonstrated efficacy in an acute mouse model of tuberculosis (TB) infection. These findings and assay developments will aid in the advancement of TB drug discovery.


Subject(s)
Antitubercular Agents , Enzyme Inhibitors , Mycobacterium tuberculosis , Small Molecule Libraries , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Animals , Mice , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Tuberculosis/drug therapy , Tuberculosis/microbiology , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Drug Discovery , Drug Evaluation, Preclinical , Thiolester Hydrolases/antagonists & inhibitors , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/genetics , Crystallography, X-Ray , Humans , Disease Models, Animal
2.
Antimicrob Agents Chemother ; 67(12): e0067123, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37966227

ABSTRACT

Tuberculosis meningitis (TBM) is essentially treated with the first-line regimen used against pulmonary tuberculosis, with a prolonged continuation phase. However, clinical outcomes are poor in comparison, for reasons that are only partially understood, highlighting the need for improved preclinical tools to measure drug distribution and activity at the site of disease. A predictive animal model of TBM would also be of great value to prioritize promising drug regimens to be tested in clinical trials, given the healthy state of the development pipeline for the first time in decades. Here, we report the optimization of a rabbit model of TBM disease induced via inoculation of Mycobacterium tuberculosis into the cisterna magna, recapitulating features typical of clinical TBM: neurological deterioration within months post-infection, acid-fast bacilli in necrotic lesions in the brain and spinal cord, and elevated lactate levels in cerebrospinal fluid (CSF). None of the infected rabbits recovered or controlled the disease. We used young adult rabbits, the size of which allows for spatial drug quantitation in critical compartments of the central nervous system that cannot be collected in clinical studies. To illustrate the translational value of the model, we report the penetration of linezolid from plasma into the CSF, meninges, anatomically distinct brain areas, cervical spine, and lumbar spine. Across animals, we measured the bacterial burden concomitant with neurological deterioration, offering a useful readout for drug efficacy studies. The model thus forms the basis for building a preclinical platform to identify improved regimens and inform clinical trial design.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Animals , Rabbits , Antitubercular Agents/pharmacology , Central Nervous System , Tuberculosis, Meningeal/drug therapy
3.
PLoS One ; 18(7): e0288290, 2023.
Article in English | MEDLINE | ID: mdl-37494371

ABSTRACT

Mouse models are critical tools in tuberculosis (TB) research. Recent studies have demonstrated that the wild mouse gut microbiota promotes host fitness and improves disease resistance. Here we examine whether the wild mouse gut microbiota alters the immunopathology of TB in BALB/c mice. Conventional BALB/c mice (LabC) and mice born to germ-free BALB/c mothers reconstituted with the wild mouse gut microbiota (WildR) were used in our studies. WildR mice controlled initial TB infection better than LabC mice. The microbial gut communities of LabC mice and WildR mice had similar richness but significantly different composition prior to infection. TB reduced the gut community richness in both cohorts while differences in community composition remained indicating a general TB-induced dysbiosis. The wild mouse gut microbiota did not alter the typical lung histopathology of TB in the BALB/c model that includes unstructured immune cell infiltrates with infected foamy macrophages invading alveolar spaces. Animals of both cohorts mounted robust T cell responses in lungs and spleen with lower absolute counts of CD4 and CD8 T cells in lungs of WildR mice during acute infection, corresponding with observed differences in pathogen load. In summary, LabC mice and WildR mice showed largely overlapping TB immunopathology and pathogen kinetics, with WildR mice controlling early acute infection better than LabC mice.


Subject(s)
Gastrointestinal Microbiome , Latent Tuberculosis , Tuberculosis , Animals , Mice , Mice, Inbred BALB C , Latent Tuberculosis/pathology , Lung/pathology , Dysbiosis/pathology
4.
Antimicrob Agents Chemother ; 67(2): e0145922, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36688684

ABSTRACT

The combination of the ß-lactam tebipenem and the ß-lactamase inhibitor avibactam shows potent bactericidal activity against Mycobacterium abscessus in vitro. Here, we report that the combination of the respective oral prodrugs tebipenem-pivoxil and avibactam ARX-1796 showed efficacy in a mouse model of M. abscessus lung infection. The results suggest that tebipenem-avibactam presents an attractive oral drug candidate pair for the treatment of M. abscessus pulmonary disease and could inform the design of clinical trials.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Disease Models, Animal , Lung , Microbial Sensitivity Tests
5.
Article in English | MEDLINE | ID: mdl-33558292

ABSTRACT

Global infections by non-tuberculous mycobacteria (NTM) are steadily rising. New drugs are needed to treat NTM infections, but the NTM drug pipeline remains poorly populated and focused on repurposing or reformulating approved antibiotics. We sought to accelerate de novo NTM drug discovery by testing advanced compounds with established activity against Mycobacterium tuberculosis 3-aminomethyl 4-halogen benzoxaboroles, a novel class of leucyl-tRNA synthetase inhibitors, were recently discovered as active against M. tuberculosis Here, we report that the benzoxaborole EC/11770 is not only a potent anti-tubercular agent but is active against the M. abscessus and M. avium complexes. Focusing on M. abscessus, which causes the most difficult-to-cure NTM disease, we show that EC/11770 retained potency against drug-tolerant biofilms in vitro and was effective in a mouse lung infection model. Resistant mutant selection experiments showed a low frequency of resistance and confirmed leucyl-tRNA synthetase as the target. This work establishes the benzoxaborole EC/11770 as a novel preclinical candidate for the treatment of NTM lung disease and tuberculosis and validates leucyl-tRNA synthetase as an attractive target for the development of broad-spectrum anti-mycobacterials.

6.
Antimicrob Agents Chemother ; 66(12): e0123722, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36350151

ABSTRACT

The antituberculosis candidate OPC-167832, an inhibitor of DprE1, was active against Mycobacterium abscessus. Resistance mapped to M. abscessus dprE1, suggesting target retention. OPC-167832 was bactericidal and did not antagonize activity of clinical anti-M. abscessus antibiotics. Due to its moderate potency compared to that against Mycobacterium tuberculosis, the compound lacked efficacy in a mouse model and is thus not a repurposing candidate. These results identify OPC-167832-DprE1 as a lead-target couple for a M. abscessus-specific optimization program.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Animals , Mice , Mycobacterium Infections, Nontuberculous/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
7.
Angew Chem Int Ed Engl ; 61(45): e202211498, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36222275

ABSTRACT

Rifamycin antibiotics are a valuable class of antimicrobials for treating infections by mycobacteria and other persistent bacteria owing to their potent bactericidal activity against replicating and non-replicating pathogens. However, the clinical utility of rifamycins against Mycobacterium abscessus is seriously compromised by a novel resistance mechanism, namely, rifamycin inactivation by ADP-ribosylation. Using a structure-based approach, we rationally redesign rifamycins through strategic modification of the ansa-chain to block ADP-ribosylation while preserving on-target activity. Validated by a combination of biochemical, structural, and microbiological studies, the most potent analogs overcome ADP-ribosylation, restored their intrinsic low nanomolar activity and demonstrated significant in vivo antibacterial efficacy. Further optimization by tuning drug disposition properties afforded a preclinical candidate with remarkable potency and an outstanding pharmacokinetic profile.


Subject(s)
Mycobacterium , Rifamycins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Rifamycins/pharmacology , Rifamycins/chemistry , ADP-Ribosylation
8.
Anal Bioanal Chem ; 414(23): 6919-6927, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35945288

ABSTRACT

Bones are the site of multiple diseases requiring chemotherapy, including cancer, arthritis, osteoporosis and infections. Yet limited methodologies are available to investigate the spatial distribution and quantitation of small molecule drugs in bone compartments, due to the difficulty of sectioning undecalcified bones and the interference of decalcification methods with spatially resolved drug quantitation. To measure drug concentrations in distinct anatomical bone regions, we have developed a workflow that enables spatial quantitation of thin undecalcified bone sections by laser-capture microdissection coupled to HPLC/tandem mass spectrometry, and spatial mapping on adjacent sections by mass spectrometry imaging. The adhesive film and staining methods were optimized to facilitate histology staining on the same sections used for mass spectrometry image acquisition, revealing drug accumulation in the underlying bone tissue architecture, for the first time. Absolute spatial concentrations of rifampicin, bedaquiline, doxycycline, vancomycin and several of their active metabolites are shown for both small rodent bones and larger rabbit bones that more closely resemble human bone density. Overlaid MALDI mass spectrometry images of drugs and histology staining enabled the generation of semi-quantitative data from regions of interest within anatomical bone compartments. These data correlated with absolute drug concentrations determined by HPLC-MS/MS in laser-capture microdissection samples. Collectively, these techniques enable semi- and fully quantitative drug distribution investigations within bone tissue compartments for the first time. Our workflow can be translated to image and quantify not only drugs but also biomarkers of disease to investigate drug penetration as well as mechanisms underlying bone disorders.


Subject(s)
Anti-Bacterial Agents , Tandem Mass Spectrometry , Animals , Bone and Bones , Chromatography, High Pressure Liquid/methods , Humans , Laser Capture Microdissection/methods , Lasers , Rabbits , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods
9.
Antimicrob Agents Chemother ; 66(9): e0066922, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36005813

ABSTRACT

Tricyclic pyrrolopyrimidines (TPPs) are a new class of antibacterials inhibiting the ATPase of DNA gyrase. TPP8, a representative of this class, is active against Mycobacterium abscessus in vitro. Spontaneous TPP8 resistance mutations mapped to the ATPase domain of M. abscessus DNA gyrase, and the compound inhibited DNA supercoiling activity of recombinant M. abscessus enzyme. Further profiling of TPP8 in macrophage and mouse infection studies demonstrated proof-of-concept activity against M. abscessus ex vivo and in vivo.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Adenosine Triphosphatases , Animals , Anti-Bacterial Agents/pharmacology , DNA Gyrase/genetics , Mice , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria , Pyrimidines , Pyrroles
10.
Nat Microbiol ; 7(6): 766-779, 2022 06.
Article in English | MEDLINE | ID: mdl-35637331

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb's intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that influence drug efficacy could facilitate the development of more effective therapies, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. Here we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. We discovered diverse mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical genetics with comparative genomics of Mtb clinical isolates, we further identified several previously unknown mechanisms of acquired drug resistance, one of which is associated with a multidrug-resistant tuberculosis outbreak in South America. Lastly, we found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat tuberculosis. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future tuberculosis drug development and treatment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Genomics , Humans , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/genetics
11.
Nat Commun ; 13(1): 2203, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35459278

ABSTRACT

The ability of Mycobacterium tuberculosis (Mtb) to resist and tolerate antibiotics complicates the development of improved tuberculosis (TB) chemotherapies. Here we define the Mtb protein CinA as a major determinant of drug tolerance and as a potential target to shorten TB chemotherapy. By reducing the fraction of drug-tolerant persisters, genetic inactivation of cinA accelerated killing of Mtb by four antibiotics in clinical use: isoniazid, ethionamide, delamanid and pretomanid. Mtb ΔcinA was killed rapidly in conditions known to impede the efficacy of isoniazid, such as during nutrient starvation, during persistence in a caseum mimetic, in activated macrophages and during chronic mouse infection. Deletion of CinA also increased in vivo killing of Mtb by BPaL, a combination of pretomanid, bedaquiline and linezolid that is used to treat highly drug-resistant TB. Genetic and drug metabolism studies suggest that CinA mediates drug tolerance via cleavage of NAD-drug adducts.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Tolerance , Isoniazid/pharmacology , Mice , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/drug therapy
12.
Antimicrob Agents Chemother ; 66(3): e0221221, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35099272

ABSTRACT

Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic, rather than pharmacokinetic, factors. Our results pave the way toward the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multidrug combinations to enable the prioritization of promising regimens for clinical trials.


Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Lung Diseases/drug therapy , Lung Diseases/microbiology , Macrolides/pharmacology , Macrolides/therapeutic use , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria , Rabbits
13.
Microbiol Spectr ; 10(1): e0132121, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019671

ABSTRACT

The aminobenzimidazole SPR719 targets DNA gyrase in Mycobacterium tuberculosis. The molecule acts as inhibitor of the enzyme's ATPase located on the Gyrase B subunit of the tetrameric Gyrase A2B2 protein. SPR719 is also active against non-tuberculous mycobacteria (NTM) and recently entered clinical development for lung disease caused by these bacteria. Resistance against SPR719 in NTM has not been characterized. Here, we determined spontaneous in vitro resistance frequencies in single step resistance development studies, MICs of resistant strains, and resistance associated DNA sequence polymorphisms in two major NTM pathogens Mycobacterium avium and Mycobacterium abscessus. A low-frequency resistance (10-8/CFU) was associated with missense mutations in the ATPase domain of the Gyrase B subunit in both bacteria, consistent with inhibition of DNA gyrase as the mechanism of action of SPR719 against NTM. For M. abscessus, but not for M. avium, a second, high-frequency (10-6/CFU) resistance mechanism was observed. High-frequency SPR719 resistance was associated with frameshift mutations in the transcriptional repressor MAB_4384 previously shown to regulate expression of the drug efflux pump system MmpS5/MmpL5. Our results confirm DNA gyrase as target of SPR719 in NTM and reveal differential resistance development in the two NTM species, with M. abscessus displaying high-frequency indirect resistance possibly involving drug efflux. IMPORTANCE Clinical emergence of resistance to new antibiotics affects their utility. Characterization of in vitro resistance is a first step in the profiling of resistance properties of novel drug candidates. Here, we characterized in vitro resistance against SPR719, a drug candidate for the treatment of lung disease caused by non-tuberculous mycobacteria (NTM). The identified resistance associated mutations and the observed differential resistance behavior of the two characterized NTM species provide a basis for follow-up studies of resistance in vivo to further inform clinical development of SPR719.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/drug effects , Mycobacterium avium/drug effects , Topoisomerase II Inhibitors/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzimidazoles/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium abscessus/enzymology , Mycobacterium abscessus/genetics , Mycobacterium abscessus/growth & development , Mycobacterium avium/enzymology , Mycobacterium avium/genetics , Mycobacterium avium/growth & development
14.
Antimicrob Agents Chemother ; 66(1): e0140021, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34723632

ABSTRACT

Cyclohexyl-griselimycin is a preclinical candidate for use against tuberculosis (TB). Here, we show that this oral cyclodepsipeptide is also active against the intrinsically drug-resistant nontuberculous mycobacterium Mycobacterium abscessus in vitro and in a mouse model of infection. This adds a novel advanced lead compound to the M. abscessus drug pipeline and supports a strategy of screening chemical matter generated in TB drug discovery efforts to fast-track the discovery of novel antibiotics against M. abscessus.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mice , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria , Peptides, Cyclic
15.
Antimicrob Agents Chemother ; 65(12): e0151421, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34606340

ABSTRACT

Fluoroquinolones-the only clinically used DNA gyrase inhibitors-are effective against tuberculosis (TB) but are in limited clinical use for nontuberculous mycobacteria (NTM) lung infections due to intrinsic drug resistance. We sought to test alternative DNA gyrase inhibitors for anti-NTM activity. Mycobacterium tuberculosis gyrase inhibitors (MGIs), a subclass of novel bacterial topoisomerase inhibitors (NBTIs), were recently shown to be active against the tubercle bacillus. Here, we show that the MGI EC/11716 not only has potent anti-tubercular activity but is active against M. abscessus and M. avium in vitro. Focusing on M. abscessus, which causes the most difficult to cure NTM disease, we show that EC/11716 is bactericidal, active against drug-tolerant biofilms, and efficacious in a murine model of M. abscessus lung infection. Based on resistant mutant selection experiments, we report a low frequency of resistance to EC/11716 and confirm DNA gyrase as its target. Our findings demonstrate the potential of NBTIs as anti-M. abscessus and possibly broad-spectrum anti-mycobacterial agents.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Animals , Mice , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , Nontuberculous Mycobacteria , Thioinosine/analogs & derivatives , Topoisomerase II Inhibitors/pharmacology
16.
Antimicrob Agents Chemother ; 65(10): e0050621, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34252307

ABSTRACT

Amikacin and kanamycin are second-line injectables used in the treatment of multidrug-resistant tuberculosis (MDR-TB) based on the clinical utility of streptomycin, another aminoglycoside and first-line anti-TB drug. While streptomycin was tested as a single agent in the first controlled TB clinical trial, introduction of amikacin and kanamycin into MDR-TB regimens was not preceded by randomized controlled trials. A recent large retrospective meta-analysis revealed that compared with regimens without any injectable drug, amikacin provided modest benefits, and kanamycin was associated with worse outcomes. Although their long-term use can cause irreversible ototoxicity, they remain part of MDR-TB regimens because they have a role in preventing emergence of resistance to other drugs. To quantify the contribution of amikacin and kanamycin to second-line regimens, we applied two-dimensional matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging in large lung lesions, quantified drug exposure in lung and in lesions of rabbits with active TB, and measured the concentrations required to kill or inhibit growth of the resident bacterial populations. Using these metrics, we applied site-of-action pharmacokinetic and pharmacodynamic (PK-PD) concepts and simulated drug coverage in patients' lung lesions. The results provide a pharmacological explanation for the limited clinical utility of both agents and reveal better PK-PD lesion coverage for amikacin than kanamycin, consistent with retrospective data of contribution to treatment success. Together with recent mechanistic studies dissecting antibacterial activity from aminoglycoside ototoxicity, the limited but rapid penetration of streptomycin, amikacin, and kanamycin to the sites of TB disease supports the development of analogs with improved efficacy and tolerability.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Animals , Antitubercular Agents/therapeutic use , Humans , Kanamycin , Rabbits , Randomized Controlled Trials as Topic , Retrospective Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy
17.
Antimicrob Agents Chemother ; 65(9): e0002421, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34228540

ABSTRACT

SQ109 is a novel well-tolerated drug candidate in clinical development for the treatment of drug-resistant tuberculosis (TB). It is the only inhibitor of the MmpL3 mycolic acid transporter in clinical development. No SQ109-resistant mutant has been directly isolated thus far in vitro, in mice, or in patients, which is tentatively attributed to its multiple targets. It is considered a potential replacement for poorly tolerated components of multidrug-resistant TB regimens. To prioritize SQ109-containing combinations with the best potential for cure and treatment shortening, one must understand its contribution against different bacterial populations in pulmonary lesions. Here, we have characterized the pharmacokinetics of SQ109 in the rabbit model of active TB and its penetration at the sites of disease-lung tissue, cellular and necrotic lesions, and caseum. A two-compartment model with first-order absorption and elimination described the plasma pharmacokinetics. At the human-equivalent dose, parameter estimates fell within the ranges published for preclinical species. Tissue concentrations were modeled using an "effect" compartment, showing high accumulation in lung and cellular lesion areas with penetration coefficients in excess of 1,000 and lower passive diffusion in caseum after 7 daily doses. These results, together with the hydrophobic nature and high nonspecific caseum binding of SQ109, suggest that multiweek dosing would be required to reach steady state in caseum and poorly vascularized compartments, similar to bedaquiline. Linking lesion pharmacokinetics to SQ109 potency in assays against replicating, nonreplicating, and intracellular M. tuberculosis showed SQ109 concentrations markedly above pharmacokinetic-pharmacodynamic targets in lung and cellular lesions throughout the dosing interval.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Antitubercular Agents/therapeutic use , Humans , Mice , Rabbits , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy
18.
Antimicrob Agents Chemother ; 65(10): e0115621, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34280020

ABSTRACT

Benzoxaboroles are a new class of leucyl-tRNA synthetase inhibitors. We recently reported that the antitubercular 4-halogenated benzoxaboroles are active against Mycobacterium abscessus. Here, we find that the nonhalogenated benzoxaborole epetraborole, a clinical candidate developed for Gram-negative infections, is also active against M. abscessus in vitro and in a mouse model of infection. This expands the repertoire of advanced lead compounds for the discovery of a benzoxaborole-based candidate to treat M. abscessus lung disease.


Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antitubercular Agents , Lung Diseases/drug therapy , Mice , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , Nontuberculous Mycobacteria
19.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161270

ABSTRACT

Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of ∼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420 Thus, we hypothesized that TA-C may be metabolized by Mtb F420-dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active "prodrug," into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.


Subject(s)
Folic Acid Antagonists/pharmacology , Multienzyme Complexes/metabolism , Mycobacterium tuberculosis/enzymology , Oxidoreductases/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Coumarins/chemistry , Coumarins/pharmacology , Drug Resistance, Bacterial/drug effects , Folic Acid/metabolism , Folic Acid Antagonists/chemistry , Genes, Bacterial , Loss of Function Mutation/genetics , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Oxidation-Reduction , Tetrahydrofolate Dehydrogenase/genetics
20.
Antimicrob Agents Chemother ; 65(8): e0067621, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34001512

ABSTRACT

New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10-8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Anti-Bacterial Agents/pharmacology , DNA Gyrase/genetics , Humans , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium abscessus/genetics , Nontuberculous Mycobacteria , Piperidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...