Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Oncol ; 14(11): 2920-2935, 2020 11.
Article in English | MEDLINE | ID: mdl-32813937

ABSTRACT

Liver metastasis is the main cause of colorectal cancer (CRC)-related death. Neutrophil extracellular traps (NETs) play important roles in CRC progression. Deoxyribonuclease I (DNase I) has been shown to alter NET function by cleaving DNA strands comprising the NET backbone. Moreover, DNase I displays high antimetastatic activity in multiple tumor models. To circumvent long-term daily administrations of recombinant DNase I, we have developed an adeno-associated virus (AAV) gene therapy vector to specifically express DNase I in the liver. In this study, we demonstrate AAV-mediated DNase I liver gene transfer following a single intravenous injection suppresses the development of liver metastases in a mouse model of CRC liver metastasis. Increased levels of neutrophils and NET formation in tumors are associated with poor prognosis in many patients with advanced cancers. Neutrophil infiltration and NET formation were inhibited in tumor tissues with AAV-DNase I treatment. This approach restored local immune responses at the tumor site by increasing the percentage of CD8+ T cells while keeping CD4+ T cells similar between AAV-DNase I and AAV-null treatments. Our data suggest that AAV-mediated DNase I liver gene transfer is a safe and effective modality to inhibit metastasis and represents a novel therapeutic strategy for CRC.


Subject(s)
Colorectal Neoplasms/pathology , Deoxyribonuclease I/genetics , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Adaptive Immunity , Animals , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Deoxyribonuclease I/immunology , Dependovirus/genetics , Extracellular Traps/genetics , Extracellular Traps/immunology , Female , Gene Expression , Gene Transfer Techniques , Genetic Therapy , Hep G2 Cells , Humans , Immunity, Innate , Liver/immunology , Liver/metabolism , Liver/pathology , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Male , Mice , Mice, Inbred C57BL
2.
Sci Adv ; 4(11): eaau4580, 2018 11.
Article in English | MEDLINE | ID: mdl-30443597

ABSTRACT

We report the development of a novel platform to enhance the efficacy and safety of follicular lymphoma (FL) treatment. Since lymphoma is a clonal malignancy of a diversity system, every tumor has a different antibody on its cell surface. Combinatorial autocrine-based selection is used to rapidly identify specific ligands for these B cell receptors on the surface of FL tumor cells. The selected ligands are used in a chimeric antigen receptor T cell (CAR-T) format for redirection of human cytotoxic T lymphocytes. Essentially, the format is the inverse of the usual CAR-T protocol. Instead of being a guide molecule, the antibody itself is the target. Thus, these studies raise the possibility of personalized treatment of lymphomas using a private antibody binding ligand that can be obtained in a few weeks.


Subject(s)
Lymphoma, B-Cell/therapy , Peptide Fragments/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Autocrine Communication , Female , Humans , Ligands , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/metabolism , Mice, Inbred NOD , Mice, SCID , Peptide Fragments/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Recent Pat Drug Deliv Formul ; 12(3): 212-222, 2018.
Article in English | MEDLINE | ID: mdl-30019653

ABSTRACT

BACKGROUND: While protein therapeutics are invaluable in managing numerous diseases, many require frequent injections to maintain therapeutically effective concentrations, due to their short half-life in circulation. PolyXen™, a platform and patented technology employing biodegradable, non-immunogenic and hydrophilic Polysialic Acids (PSA) for drug delivery, is being utilized to overcome such limitations, thereby potentially enabling the clinical utility of a broad range of protein therapeutics. Here, we report the recent progress on two development candidates, polysialylated deoxyribonuclease I (PSA-DNase) and polysialylated erythropoietin (PSA-EPO). METHODS AND RESULTS: Chemical polysialylation of DNase I (DNase) using PSA with different chain length at various conjugation sites led to improved stability against proteases and thermal stress, and slightly reduced enzymatic activity. Polysialylation of EPO resulted in retention of protein structure and PSA-EPO remained biologically active. PSA-EPO had a significantly prolonged circulating half-life (e.g. t1/2 of PSA-EPO = ~400 h in patients after subcutaneous administration, aimed for once monthly administration, vs. t1/2 of EPO = ~22 h; administered twice or thrice weekly), and retained in vivo efficacy. CONCLUSION: This approach has been clinically validated in phase I (in healthy volunteers) and II studies of PSA-EPO [for managing anemia in patients with chronic kidney disease (CKD)].


Subject(s)
Anemia/prevention & control , Deoxyribonuclease I/pharmacology , Drug Delivery Systems/methods , Erythropoietin/pharmacology , Erythropoietin/pharmacokinetics , Sialic Acids/pharmacokinetics , Animals , Deoxyribonuclease I/adverse effects , Deoxyribonuclease I/chemistry , Drug Stability , Erythropoietin/administration & dosage , Erythropoietin/chemistry , Female , Half-Life , Humans , Injections, Subcutaneous , Patents as Topic , Rats , Sialic Acids/chemistry
4.
Neurotherapeutics ; 13(4): 895-904, 2016 10.
Article in English | MEDLINE | ID: mdl-27324388

ABSTRACT

Previously, we showed that CD206-targeted liposomal delivery of co-encapsulated immunodominant myelin basic protein (MBP) sequences MBP46-62, MBP124-139 and MBP147-170 (Xemys) suppressed experimental autoimmune encephalomyelitis in dark Agouti rats. The objective of this study was to assess the safety of Xemys in the treatment of patients with relapsing-remitting multiple sclerosis (MS) and secondary progressive MS, who failed to achieve a sustained response to first-line disease-modifying therapies. In this phase I, open-label, dose-escalating, proof-of-concept study, 20 patients with relapsing-remitting or secondary progressive MS received weekly subcutaneously injections with ascending doses of Xemys up to a total dose of 2.675 mg. Clinical examinations, including Expanded Disability Status Scale score, magnetic resonance imaging results, and serum cytokine concentrations, were assessed before the first injection and for up to 17 weeks after the final injection. Xemys was safe and well tolerated when administered for 6 weeks to a maximum single dose of 900 µg. Expanded Disability Status Scale scores and numbers of T2-weighted and new gadolinium-enhancing lesions on magnetic resonance imaging were statistically unchanged at study exit compared with baseline; nonetheless, the increase of number of active gadolinium-enhancing lesions on weeks 7 and 10 in comparison with baseline was statistically significant. During treatment, the serum concentrations of the cytokines monocyte chemoattractant protein-1, macrophage inflammatory protein-1ß, and interleukin-7 decreased, whereas the level of tumor necrosis factor-α increased. These results provide evidence for the further development of Xemys as an antigen-specific, disease-modifying therapy for patients with MS.


Subject(s)
Antigens, CD/metabolism , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Multiple Sclerosis/drug therapy , Myelin Basic Protein/chemistry , Myelin Basic Protein/therapeutic use , Peptide Fragments/therapeutic use , Adult , Cytokines/blood , Disability Evaluation , Dose-Response Relationship, Drug , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/diagnostic imaging , Phospholipids/therapeutic use , Statistics, Nonparametric , Treatment Outcome , Young Adult
5.
Mediators Inflamm ; 2016: 2847232, 2016.
Article in English | MEDLINE | ID: mdl-27239100

ABSTRACT

We have previously shown that immunodominant MBP peptides encapsulated in mannosylated liposomes (Xemys) effectively suppressed experimental allergic encephalomyelitis (EAE). Within the frames of the successfully completed phase I clinical trial, we investigated changes in the serum cytokine profile after Xemys administration in MS patients. We observed a statistically significant decrease of MCP-1/CCL2, MIP-1ß/CCL4, IL-7, and IL-2 at the time of study completion. In contrast, the serum levels of TNF-α were remarkably elevated. Our data suggest that the administration of Xemys leads to a normalization of cytokine status in MS patients to values commonly reported for healthy subjects. These data are an important contribution for the upcoming Xemys clinical trials.


Subject(s)
Chemokine CCL2/blood , Chemokine CCL4/blood , Interleukin-2/blood , Liposomes/chemistry , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Myelin Basic Protein/therapeutic use , Tumor Necrosis Factor-alpha/blood , Adult , Animals , Female , Humans , Interleukin-7/metabolism , Male , Mice , Middle Aged , Multiple Sclerosis/metabolism , Young Adult
6.
Methods Mol Biol ; 1321: 389-404, 2015.
Article in English | MEDLINE | ID: mdl-26082236

ABSTRACT

Design of drug with prolonged therapeutic action is one of the rapid developing fields of modern medical science and required implementation of different methods of protein chemistry and molecular biology. There are several therapeutic proteins needing increasing of their stability, pharmacokinetic, and pharmacodynamics parameters. To make long-live DNA-encoded drug PEGylation was proposed. Alternatively polysialic (colominic) acid, extracted from the cell wall of E. coli, fractionated to the desired size by anion-exchange chromatography and chemically activated to the amine-reactive aldehyde form, may be chemically attached to the polypeptide chain. Conjugates of proteins and polysialic acid generally resemble properties of protein-PEG conjugates, but possess significant negative net charge and are thought to be fully degradable after endocytosis due to the presence of intracellular enzymes, hydrolyzing the polysialic acid. Complete biodegradation of the polysialic acid moiety makes this kind of conjugates preferable for creation of drugs, intended for chronic use. Here, we describe two different protocols of chemical polysialylation. First protocol was employed for the CHO-derived human butyrylcholinesterase with optimized for recovery of specific enzyme activity. Polysialic acid moieties are attached at various lysine residues. Another protocol was developed for high-yield conjugation of human insulin; major conjugation point is the N-terminal residue of the insulin's light chain. These methods may allow to produce polysialylated conjugates of various proteins or polypeptides with reasonable yield and without significant loss of functional activity.


Subject(s)
Recombinant Proteins/metabolism , Sialic Acids/metabolism , Animals , Butyrylcholinesterase/metabolism , CHO Cells , Cell Line , Cricetulus , Escherichia coli/metabolism , Humans , Insulin/metabolism , Lysine/metabolism , Peptides/metabolism , Polysaccharides/metabolism
7.
Proc Natl Acad Sci U S A ; 110(4): 1243-8, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23297221

ABSTRACT

The creation of effective bioscavengers as a pretreatment for exposure to nerve agents is a challenging medical objective. We report a recombinant method using chemical polysialylation to generate bioscavengers stable in the bloodstream. Development of a CHO-based expression system using genes encoding human butyrylcholinesterase and a proline-rich peptide under elongation factor promoter control resulted in self-assembling, active enzyme multimers. Polysialylation gives bioscavengers with enhanced pharmacokinetics which protect mice against 4.2 LD(50) of S-(2-(diethylamino)ethyl) O-isobutyl methanephosphonothioate without perturbation of long-term behavior.


Subject(s)
Butyrylcholinesterase/chemistry , Butyrylcholinesterase/pharmacokinetics , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Amino Acid Sequence , Animals , Butyrylcholinesterase/administration & dosage , Butyrylcholinesterase/genetics , CHO Cells , Chemical Warfare Agents/toxicity , Cricetinae , Cricetulus , Humans , Lethal Dose 50 , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Sequence Data , Neuroprotective Agents/administration & dosage , Organothiophosphorus Compounds/antagonists & inhibitors , Organothiophosphorus Compounds/toxicity , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics , Sialic Acids/chemistry
8.
FASEB J ; 27(1): 222-31, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23047895

ABSTRACT

Multiple sclerosis (MS) is a severe inflammatory and neurodegenerative disease with an autoimmune background. Despite the variety of therapeutics available against MS, the development of novel approaches to its treatment is of high importance in modern pharmaceutics. In this study, experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats has been treated with immunodominant peptides of the myelin basic protein (MBP) encapsulated in mannosylated small unilamellar vesicles. The results show that liposome-encapsulated MBP(46-62) is the most effective in reducing maximal disease score during the first attack, while MBP(124-139) and MBP(147-170) can completely prevent the development of the exacerbation stage. Both mannosylation of liposomes and encapsulation of peptides are critical for the therapeutic effect, since neither naked peptides nor nonmannosylated liposomes, loaded or empty, have proved effective. The liposome-mediated synergistic effect of the mixture of 3 MBP peptides significantly suppresses the progression of protracted EAE, with the median cumulative disease score being reduced from 22 to 14 points, compared to the placebo group; prevents the production of circulating autoantibodies; down-regulates the synthesis of Th1 cytokines; and induces the production of brain-derived neurotrophic factor in the central nervous system. Thus, the proposed formulation ameliorates EAE, providing for a less severe first attack and rapid recovery from exacerbation, and offers a promising therapeutic modality in MS treatment.


Subject(s)
Encephalitis/prevention & control , Hypersensitivity/prevention & control , Liposomes , Peptides/therapeutic use , Animals , Blotting, Western , Encephalitis/etiology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Hypersensitivity/complications , Mice , Rats , Surface Plasmon Resonance
9.
Biochimie ; 95(2): 264-70, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23023197

ABSTRACT

Recombinant gut hormone oxyntomodulin (OXM) is known to act as a satiety signal in human subjects and has therapeutic potential as an appetite controlling agent. The only form of this hormone that has a prospective use is a modified one, because native OXM has a very short half-life in vivo. Conjugation of OXM and the natural hydrophilic polymer polysialic acid (PSA) may significantly improve its half-life. Chemical polysialylation in vitro was used to create a long-acting form of OXM, the polysialic acid-oxyntomodulin (PSA-OXM) conjugate. The conjugation site was identified using mass shift comparative analysis of Asp-N proteolytic digests. The anorexic effect of the conjugate was tested on the lean, fasted mouse model. A two-stage purification technique was developed to obtain a homogeneous PSA-OXM conjugate, suitable for in vivo testing. The N-terminal backbone primary amino group was found to be the only point of conjugation. The conjugate obtained was resistant to the DPP-IV protease. A single injection of PSA-OXM at 15 µmol/kg dose was sufficient to maintain a steady decrease in food consumption for 8 h (P < 0.05). The length of the anorexic effect achieved is comparable to other long-acting derivatives of OXM but it requires a much higher dose for administration. It is expected that site-directed attachment of the PSA chain to the inner residues of OXM, away from the site of interaction with receptors, would produce a compound with a higher specific activity but comparable stability in the bloodstream. The conjugation technique used may be used to create OXM derivatives and other related hormones to obtain long-lasting variants, with improved suitability for clinical use.


Subject(s)
Appetite Depressants/chemical synthesis , Eating/drug effects , Glycoconjugates/chemical synthesis , Oxyntomodulin/chemical synthesis , Sialic Acids/chemistry , Animals , Appetite Depressants/pharmacokinetics , Appetite Depressants/pharmacology , Dipeptidyl Peptidase 4/metabolism , Drug Design , Glycoconjugates/pharmacokinetics , Glycoconjugates/pharmacology , Half-Life , Humans , Male , Mice , Mice, Inbred C57BL , Oxyntomodulin/pharmacokinetics , Oxyntomodulin/pharmacology , Peptide Fragments/analysis , Proteolysis
10.
Mol Immunol ; 47(1): 87-95, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19201029

ABSTRACT

Tremendous efforts to produce an efficient vaccine for HIV infection have been unsuccessful. The ability of HIV to utilize sophisticated mechanisms to escape killing by host immune system rises dramatic problems in the development of antiviral therapeutics. The HIV infection proceeds by interaction of coat viral glycoprotein gp120 trimer with CD4(+) receptor of the lymphocyte. Thus this surface antigen may be regarded as a favorable target for immunotherapy. In the present study, we have developed three different strategies to produce gp120-specific response in autoimmune prone mice (SJL strain) as potential tools for production "catalytic vaccine". Therefore (i) reactive immunization by peptidylphosphonate, structural part of the coat glycoprotein, (ii) immunization by engineered fused epitopes of gp120 and encephalogenic peptide, a part of myelin basic protein, and (iii) combined vaccination by DNA and corresponding gp120 fragments incorporated into liposomes were investigated. In the first two cases monoclonal antibodies and their recombinant fragments with amidolytic and gp120-specific proteolytic activities were characterized. In the last case, catalytic antibodies with virus neutralizing activity proved in cell line models were harvested.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Catalytic/biosynthesis , HIV Envelope Protein gp120/immunology , Immunization/methods , Animals , Antibodies, Monoclonal/biosynthesis , Autoimmunity , Capsid Proteins/immunology , Capsid Proteins/therapeutic use , Epitopes , Mice , Myelin Basic Protein/immunology , Peptide Fragments/immunology , Protein Engineering , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , Vaccines, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...