Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int Immunopharmacol ; 142(Pt B): 113145, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303537

ABSTRACT

INTRODUCTION: Monocytes mainly contribute to the development and progression of vascular inflammatory conditions via the M1 polarization. The elevated levels of advanced glycation end products (AGEs) in diabetic environment lead to severe inflammation, and the release of pro-inflammatory mediators. This shifts the balance towards the pro-inflammatory state of monocytes. OBJECTIVE: The current study was aimed to determine the antiglycation activity of 1,2,4-triazine derivatives, and study of their molecular basis in regulating the AGEs-mediated inflammatory responses in THP-1 monocytes. METHODS: Primarily, the antiglycation activity of a series of 1,2,4-triazine derivatives was evaluated against MGO-AGEs in vitro. The toxicity of antiglycation compounds was determined by a metabolic assay, using human hepatocyte (HepG2) and monocyte (THP-1) cell lines. DCFH-DA probe was used to evaluate the antioxidant potential of the compounds. Immunocytochemistry, Western blotting, and ELISA techniques were employed to determine the levels of pro-inflammatory markers (NF-κB, RAGE, COX-1, COX-2, and PGE2) in THP-1 monocytes under in-vitro hyperglycemic conditions. RESULTS: Results indicate that the triazine derivatives 22, and 23 were the most potent antiglycation agents among the entire series, while non-toxic to HepG2, and THP-1 cells. Both compounds inhibited the AGEs-induced upstream and downstream signaling of NADPH oxidase and inflammatory mediators p38 and NF-κß, respectively, in THP-1 monocytes. They also inhibited the induction of COX-2 and its product PGE2 by suppressing AGE-RAGE interactions. Moreover, compounds 22, and 23 reversed the AGEs-mediated suppression of COX-1 in THP-1 monocytes. CONCLUSION: In conclusion, 1,2,4-triazine derivatives 22, and 23 have the potential to suppress inflammatory responses under the diabetic environment through AGE-RAGE-NF-κß/p38 nexus in THP-1 monocytes. These findings identify triazines 22, and 23 as compelling candidates for drug development, potentially beneficial for the diabetic patients with an elevated risk of vascular complications, such as atherosclerosis.

2.
Neurobiol Dis ; 180: 106067, 2023 05.
Article in English | MEDLINE | ID: mdl-36893901

ABSTRACT

Although Parkinson's disease (PD) key neuropathological hallmarks are well known, the underlying pathogenic mechanisms of the disease still need to be elucidated to identify innovative disease-modifying drugs and specific biomarkers. NF-κB transcription factors are involved in regulating several processes associated with neurodegeneration, such as neuroinflammation and cell death, that could be related to PD pathology. NF-κB/c-Rel deficient (c-rel-/-) mice develop a progressive PD-like phenotype. The c-rel-/- mice present both prodromal and motor symptoms as well as key neuropathological features, including nigrostriatal dopaminergic neurons degeneration, accumulation of pro-apoptotic NF-κB/RelA acetylated at the lysine 310 residue (Ac-RelA(lys310)) and progressive caudo-rostral brain deposition of alpha-synuclein. c-Rel inhibition can exacerbate MPTP-induced neurotoxicity in mice. These findings support the claim that misregulation of c-Rel protein may be implicated in PD pathophysiology. In this study, we aimed at evaluating c-Rel levels and DNA-binding activity in human brains and peripheral blood mononuclear cells (PBMCs) of sporadic PD patients. We analyzed c-Rel protein content and activity in frozen substantia nigra (SN) samples from post-mortem brains of 10 PD patients and 9 age-matched controls as well as in PBMCs from 72 PD patients and 40 age-matched controls. c-Rel DNA-binding was significantly lower and inversely correlated with Ac-RelA(lys310) content in post-mortem SN of sporadic PD cases, when compared to healthy controls. c-Rel DNA-binding activity was also reduced in PBMCs of followed-up PD subjects. The decrease of c-Rel activity in PBMCs from PD patients appeared to be independent from dopaminergic medication or disease progression, as it was evident even in early stage, drug-naïve patients. Remarkably, the levels of c-Rel protein were comparable in PD and control subjects, pointing out a putative role for post-translational modifications of the protein in c-Rel dysfunctions. These findings support that PD is characterized by the loss of NF-κB/c-Rel activity that potentially has a role in PD pathophysiology. Future studies will be aimed at addressing whether the reduction of c-Rel DNA-binding could constitute a novel biomarker for PD.


Subject(s)
MPTP Poisoning , Parkinson Disease , Humans , Mice , Animals , NF-kappa B/metabolism , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-rel/metabolism , Leukocytes, Mononuclear/metabolism , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , MPTP Poisoning/pathology
3.
Front Pharmacol ; 13: 1017364, 2022.
Article in English | MEDLINE | ID: mdl-36339574

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, progressive paralysis and finally death. Despite the research efforts, currently there is no cure for ALS. In recent years, multiple epigenetic mechanisms have been associated with neurodegenerative diseases. A pathological role for histone hypoacetylation and the abnormal NF-κB/RelA activation involving deacetylation of lysines, with the exclusion of lysine 310, has been established in ALS. Recent findings indicate that the pathological acetylation state of NF-κB/RelA and histone 3 (H3) occurring in the SOD1(G93A) murine model of ALS can be corrected by the synergistic combination of low doses of the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator resveratrol and the histone deacetylase (HDAC) inhibitors MS-275 (entinostat) or valproate. The combination of the epigenetic drugs, by rescuing RelA and the H3 acetylation state, promotes a beneficial and sexually dimorphic effect on disease onset, survival and motor neurons degeneration. In this mini review, we discuss the potential of the epigenetic combination of resveratrol with HDAC inhibitors in the ALS treatment.

SELECTION OF CITATIONS
SEARCH DETAIL