Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Int J Radiat Oncol Biol Phys ; 119(1): 66-77, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38000701

ABSTRACT

PURPOSE: This study aimed to predict the probability of grade ≥2 pneumonitis or dyspnea within 12 months of receiving conventionally fractionated or mildly hypofractionated proton beam therapy for locally advanced lung cancer using machine learning. METHODS AND MATERIALS: Demographic and treatment characteristics were analyzed for 965 consecutive patients treated for lung cancer with conventionally fractionated or mildly hypofractionated (2.2-3 Gy/fraction) proton beam therapy across 12 institutions. Three machine learning models (gradient boosting, additive tree, and logistic regression with lasso regularization) were implemented to predict Common Terminology Criteria for Adverse Events version 4 grade ≥2 pulmonary toxicities using double 10-fold cross-validation for parameter hyper-tuning without leak of information. Balanced accuracy and area under the curve were calculated, and 95% confidence intervals were obtained using bootstrap sampling. RESULTS: The median age of the patients was 70 years (range, 20-97), and they had predominantly stage IIIA or IIIB disease. They received a median dose of 60 Gy in 2 Gy/fraction, and 46.4% received concurrent chemotherapy. In total, 250 (25.9%) had grade ≥2 pulmonary toxicity. The probability of pulmonary toxicity was 0.08 for patients treated with pencil beam scanning and 0.34 for those treated with other techniques (P = 8.97e-13). Use of abdominal compression and breath hold were highly significant predictors of less toxicity (P = 2.88e-08). Higher total radiation delivered dose (P = .0182) and higher average dose to the ipsilateral lung (P = .0035) increased the likelihood of pulmonary toxicities. The gradient boosting model performed the best of the models tested, and when demographic and dosimetric features were combined, the area under the curve and balanced accuracy were 0.75 ± 0.02 and 0.67 ± 0.02, respectively. After analyzing performance versus the number of data points used for training, we observed that accuracy was limited by the number of observations. CONCLUSIONS: In the largest analysis of prospectively enrolled patients with lung cancer assessing pulmonary toxicities from proton therapy to date, advanced machine learning methods revealed that pencil beam scanning, abdominal compression, and lower normal lung doses can lead to significantly lower probability of developing grade ≥2 pneumonitis or dyspnea.


Subject(s)
Lung Neoplasms , Pneumonia , Proton Therapy , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Lung Neoplasms/drug therapy , Proton Therapy/adverse effects , Protons , Prospective Studies , Pneumonia/etiology , Dyspnea/etiology , Radiotherapy Dosage
2.
Am J Transplant ; 23(12): 1908-1921, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37652176

ABSTRACT

Liver transplantation (LT) is a treatment for acute-on-chronic liver failure (ACLF), but high post-LT mortality has been reported. Existing post-LT models in ACLF have been limited. We developed an Expert-Augmented Machine Learning (EAML) model to predict post-LT outcomes. We identified ACLF patients who underwent LT in the University of California Health Data Warehouse. We applied the RuleFit machine learning (ML) algorithm to extract rules from decision trees and create intermediate models. We asked human experts to rate the rules generated by RuleFit and incorporated these ratings to generate final EAML models. We identified 1384 ACLF patients. For death at 1 year, areas under the receiver-operating characteristic curve were 0.707 (confidence interval [CI] 0.625-0.793) for EAML and 0.719 (CI 0.640-0.800) for RuleFit. For death at 90 days, areas under the receiver-operating characteristic curve were 0.678 (CI 0.581-0.776) for EAML and 0.707 (CI 0.615-0.800) for RuleFit. In pairwise comparisons, both EAML and RuleFit models outperformed cross-sectional models. Significant discrepancies between experts and ML occurred in rankings of biomarkers used in clinical practice. EAML may serve as a method for ML-guided hypothesis generation in further ACLF research.


Subject(s)
Acute-On-Chronic Liver Failure , Liver Transplantation , Humans , Liver Transplantation/adverse effects , Acute-On-Chronic Liver Failure/etiology , Acute-On-Chronic Liver Failure/surgery , Cross-Sectional Studies , Biomarkers , ROC Curve , Retrospective Studies , Prognosis
3.
Pediatr Rheumatol Online J ; 20(1): 12, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35144633

ABSTRACT

BACKGROUND: In comparison with the general population, adolescents with juvenile idiopathic arthritis (JIA) are at higher risk for morbidity and mortality. However, limited evidence is available about this condition's underlying metabolic profile in adolescents with JIA relative to healthy controls. In this untargeted, cross-sectional metabolomics study, we explore the plasma metabolites in this population. METHODS: A sample of 20 adolescents with JIA and 20 controls aged 13-17 years were recruited to complete surveys, provide medical histories and biospecimens, and undergo assessments. Fasting morning plasma samples were processed with liquid chromatography-mass spectrometry. Data were centered, scaled, and analyzed using generalized linear models accounting for age, sex, and medications (p-values adjusted for multiple comparisons using the Holm method). Spearman's correlations were used to evaluate relationships among metabolites, time since diagnosis, and disease severity. RESULTS: Of 72 metabolites identified in the samples, 55 were common to both groups. After adjustments, 6 metabolites remained significantly different between groups. Alpha-glucose, alpha-ketoglutarate, serine, and N-acetylaspartate were significantly lower in the JIA group than in controls; glycine and cystine were higher. Seven additional metabolites were detected only in the JIA group; 10 additional metabolites were detected only in the control group. Metabolites were unrelated to disease severity or time since diagnosis. CONCLUSIONS: The metabolic signature of adolescents with JIA relative to controls reflects a disruption in oxidative stress; neurological health; and amino acid, caffeine, and energy metabolism pathways. Serine and N-acetylaspartate were promising potential biomarkers, and their metabolic pathways are linked to both JIA and cardiovascular disease risk. The pathways may be a source of new diagnostic, treatment, or prevention options. This study's findings contribute new knowledge for systems biology and precision health approaches to JIA research. Further research is warranted to confirm these findings in a larger sample.


Subject(s)
Arthritis, Juvenile/metabolism , Aspartic Acid/analogs & derivatives , Serine/metabolism , Adolescent , Aspartic Acid/metabolism , Cross-Sectional Studies , Female , Humans , Male , Metabolomics
4.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 10186-10195, 2022 12.
Article in English | MEDLINE | ID: mdl-34941500

ABSTRACT

The estimation of nested functions (i.e., functions of functions) is one of the central reasons for the success and popularity of machine learning. Today, artificial neural networks are the predominant class of algorithms in this area, known as representational learning. Here, we introduce Representational Gradient Boosting (RGB), a nonparametric algorithm that estimates functions with multi-layer architectures obtained using backpropagation in the space of functions. RGB does not need to assume a functional form in the nodes or output (e.g., linear models or rectified linear units), but rather estimates these transformations. RGB can be seen as an optimized stacking procedure where a meta algorithm learns how to combine different classes of functions (e.g., Neural Networks (NN) and Gradient Boosting (GB)), while building and optimizing them jointly in an attempt to compensate each other's weaknesses. This highlights a stark difference with current approaches to meta-learning that combine models only after they have been built independently. We showed that providing optimized stacking is one of the main advantages of RGB over current approaches. Additionally, due to the nested nature of RGB we also showed how it improves over GB in problems that have several high-order interactions. Finally, we investigate both theoretically and in practice the problem of recovering nested functions and the value of prior knowledge.


Subject(s)
Algorithms , Neural Networks, Computer , Machine Learning
6.
Lancet Infect Dis ; 21(9): e296-e301, 2021 09.
Article in English | MEDLINE | ID: mdl-33631099

ABSTRACT

Adherence to non-pharmaceutical interventions to prevent the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been highly variable across settings, particularly in the USA. In this Personal View, we review data supporting the importance of the viral inoculum (the dose of viral particles from an infected source over time) in increasing the probability of infection in respiratory, gastrointestinal, and sexually transmitted viral infections in humans. We also review the available evidence linking the relationship of the viral inoculum to disease severity. Non-pharmaceutical interventions might reduce the susceptibility to SARS-CoV-2 infection by reducing the viral inoculum when there is exposure to an infectious source. Data from physical sciences research suggest that masks protect the wearer by filtering virus from external sources, and others by reducing expulsion of virus by the wearer. Social distancing, handwashing, and improved ventilation also reduce the exposure amount of viral particles from an infectious source. Maintaining and increasing non-pharmaceutical interventions can help to quell SARS-CoV-2 as we enter the second year of the pandemic. Finally, we argue that even as safe and effective vaccines are being rolled out, non-pharmaceutical interventions will continue to play an essential role in suppressing SARS-CoV-2 transmission until equitable and widespread vaccine administration has been completed.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , SARS-CoV-2 , Virus Diseases/prevention & control , COVID-19/transmission , Hand Disinfection , Humans , Masks/virology , Physical Distancing , Severity of Illness Index , Ventilation , Virus Diseases/transmission
7.
Cereb Cortex ; 31(3): 1444-1463, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33119049

ABSTRACT

The parieto-frontal integration theory (PFIT) identified a fronto-parietal network of regions where individual differences in brain parameters most strongly relate to cognitive performance. PFIT was supported and extended in adult samples, but not in youths or within single-scanner well-powered multimodal studies. We performed multimodal neuroimaging in 1601 youths age 8-22 on the same 3-Tesla scanner with contemporaneous neurocognitive assessment, measuring volume, gray matter density (GMD), mean diffusivity (MD), cerebral blood flow (CBF), resting-state functional magnetic resonance imaging measures of the amplitude of low frequency fluctuations (ALFFs) and regional homogeneity (ReHo), and activation to a working memory and a social cognition task. Across age and sex groups, better performance was associated with higher volumes, greater GMD, lower MD, lower CBF, higher ALFF and ReHo, and greater activation for the working memory task in PFIT regions. However, additional cortical, striatal, limbic, and cerebellar regions showed comparable effects, hence PFIT needs expansion into an extended PFIT (ExtPFIT) network incorporating nodes that support motivation and affect. Associations of brain parameters became stronger with advancing age group from childhood to adolescence to young adulthood, effects occurring earlier in females. This ExtPFIT network is developmentally fine-tuned, optimizing abundance and integrity of neural tissue while maintaining a low resting energy state.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Memory, Short-Term/physiology , Social Cognition , Adolescent , Child , Female , Humans , Male , Multimodal Imaging/methods , Neuroimaging/methods , Young Adult
9.
Proc Natl Acad Sci U S A ; 117(9): 4571-4577, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071251

ABSTRACT

Machine learning is proving invaluable across disciplines. However, its success is often limited by the quality and quantity of available data, while its adoption is limited by the level of trust afforded by given models. Human vs. machine performance is commonly compared empirically to decide whether a certain task should be performed by a computer or an expert. In reality, the optimal learning strategy may involve combining the complementary strengths of humans and machines. Here, we present expert-augmented machine learning (EAML), an automated method that guides the extraction of expert knowledge and its integration into machine-learned models. We used a large dataset of intensive-care patient data to derive 126 decision rules that predict hospital mortality. Using an online platform, we asked 15 clinicians to assess the relative risk of the subpopulation defined by each rule compared to the total sample. We compared the clinician-assessed risk to the empirical risk and found that, while clinicians agreed with the data in most cases, there were notable exceptions where they overestimated or underestimated the true risk. Studying the rules with greatest disagreement, we identified problems with the training data, including one miscoded variable and one hidden confounder. Filtering the rules based on the extent of disagreement between clinician-assessed risk and empirical risk, we improved performance on out-of-sample data and were able to train with less data. EAML provides a platform for automated creation of problem-specific priors, which help build robust and dependable machine-learning models in critical applications.


Subject(s)
Expert Systems , Machine Learning/standards , Medical Informatics/methods , Data Management/methods , Database Management Systems , Medical Informatics/standards
10.
Neurooncol Adv ; 1(1): vdz011, 2019.
Article in English | MEDLINE | ID: mdl-31608329

ABSTRACT

BACKGROUND: We investigated prognostic models based on clinical, radiologic, and radiomic feature to preoperatively identify meningiomas at risk for poor outcomes. METHODS: Retrospective review was performed for 303 patients who underwent resection of 314 meningiomas (57% World Health Organization grade I, 35% grade II, and 8% grade III) at two independent institutions, which comprised primary and external datasets. For each patient in the primary dataset, 16 radiologic and 172 radiomic features were extracted from preoperative magnetic resonance images, and prognostic features for grade, local failure (LF) or overall survival (OS) were identified using the Kaplan-Meier method, log-rank tests and recursive partitioning analysis. Regressions and random forests were used to generate and test prognostic models, which were validated using the external dataset. RESULTS: Multivariate analysis revealed that apparent diffusion coefficient hypointensity (HR 5.56, 95% CI 2.01-16.7, P = .002) was associated with high grade meningioma, and low sphericity was associated both with increased LF (HR 2.0, 95% CI 1.1-3.5, P = .02) and worse OS (HR 2.94, 95% CI 1.47-5.56, P = .002). Both radiologic and radiomic predictors of adverse meningioma outcomes were significantly associated with molecular markers of aggressive meningioma biology, such as somatic mutation burden, DNA methylation status, and FOXM1 expression. Integrated prognostic models combining clinical, radiologic, and radiomic features demonstrated improved accuracy for meningioma grade, LF, and OS (area under the curve 0.78, 0.75, and 0.78, respectively) compared to models based on clinical features alone. CONCLUSIONS: Preoperative radiologic and radiomic features such as apparent diffusion coefficient and sphericity can predict tumor grade, LF, and OS in patients with meningioma.

11.
Proc Natl Acad Sci U S A ; 116(40): 19887-19893, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527280

ABSTRACT

The expansion of machine learning to high-stakes application domains such as medicine, finance, and criminal justice, where making informed decisions requires clear understanding of the model, has increased the interest in interpretable machine learning. The widely used Classification and Regression Trees (CART) have played a major role in health sciences, due to their simple and intuitive explanation of predictions. Ensemble methods like gradient boosting can improve the accuracy of decision trees, but at the expense of the interpretability of the generated model. Additive models, such as those produced by gradient boosting, and full interaction models, such as CART, have been investigated largely in isolation. We show that these models exist along a spectrum, revealing previously unseen connections between these approaches. This paper introduces a rigorous formalization for the additive tree, an empirically validated learning technique for creating a single decision tree, and shows that this method can produce models equivalent to CART or gradient boosted stumps at the extremes by varying a single parameter. Although the additive tree is designed primarily to provide both the model interpretability and predictive performance needed for high-stakes applications like medicine, it also can produce decision trees represented by hybrid models between CART and boosted stumps that can outperform either of these approaches.


Subject(s)
Algorithms , Decision Trees , Machine Learning , Databases, Factual , Models, Statistical , Programming Languages
12.
J Cereb Blood Flow Metab ; 39(3): 524-535, 2019 03.
Article in English | MEDLINE | ID: mdl-29072856

ABSTRACT

The human brain consumes a disproportionate amount of the body's overall metabolic resources, and evidence suggests that brain and body may compete for substrate during development. Using perfusion MRI from a large cross-sectional cohort, we examined developmental changes of MRI-derived estimates of brain metabolism, in relation to weight change. Nonlinear models demonstrated that, in childhood, changes in body weight were inversely related to developmental age-related changes in brain metabolism. This inverse relationship persisted through early adolescence, after which body and brain metabolism began to decline. Females achieved maximum body growth approximately two years earlier than males, with a correspondingly earlier stabilization of brain metabolism to adult levels. These findings confirm prior findings with positron emission tomography performed in a much smaller cohort, demonstrate that relative brain metabolism can be inferred from noninvasive MRI data, and extend observations on the associations between body growth and brain metabolism to sex differences through adolescence.


Subject(s)
Body Weight , Brain/metabolism , Magnetic Resonance Imaging/methods , Sex Factors , Adolescent , Age Factors , Child , Child, Preschool , Cross-Sectional Studies , Female , Glucose/metabolism , Humans , Infant , Infant, Newborn , Male , Sex Characteristics , Young Adult
13.
PLoS One ; 13(9): e0204161, 2018.
Article in English | MEDLINE | ID: mdl-30235308

ABSTRACT

BACKGROUND: Meningiomas are stratified according to tumor grade and extent of resection, often in isolation of other clinical variables. Here, we use machine learning (ML) to integrate demographic, clinical, radiographic and pathologic data to develop predictive models for meningioma outcomes. METHODS AND FINDINGS: We developed a comprehensive database containing information from 235 patients who underwent surgery for 257 meningiomas at a single institution from 1990 to 2015. The median follow-up was 4.3 years, and resection specimens were re-evaluated according to current diagnostic criteria, revealing 128 WHO grade I, 104 grade II and 25 grade III meningiomas. A series of ML algorithms were trained and tuned by nested resampling to create models based on preoperative features, conventional postoperative features, or both. We compared different algorithms' accuracy as well as the unique insights they offered into the data. Machine learning models restricted to preoperative information, such as patient demographics and radiographic features, had similar accuracy for predicting local failure (AUC = 0.74) or overall survival (AUC = 0.68) as models based on meningioma grade and extent of resection (AUC = 0.73 and AUC = 0.72, respectively). Integrated models incorporating all available demographic, clinical, radiographic and pathologic data provided the most accurate estimates (AUC = 0.78 and AUC = 0.74, respectively). From these models, we developed decision trees and nomograms to estimate the risks of local failure or overall survival for meningioma patients. CONCLUSIONS: Clinical information has been historically underutilized in the prediction of meningioma outcomes. Predictive models trained on preoperative clinical data perform comparably to conventional models trained on meningioma grade and extent of resection. Combination of all available information can help stratify meningioma patients more accurately.


Subject(s)
Meningioma/surgery , Postoperative Care , Preoperative Care , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Cluster Analysis , Decision Trees , Humans , Machine Learning , Middle Aged , Nomograms , Time Factors , Treatment Outcome , Young Adult
14.
Neuroimage ; 169: 407-418, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29278774

ABSTRACT

Data quality is increasingly recognized as one of the most important confounding factors in brain imaging research. It is particularly important for studies of brain development, where age is systematically related to in-scanner motion and data quality. Prior work has demonstrated that in-scanner head motion biases estimates of structural neuroimaging measures. However, objective measures of data quality are not available for most structural brain images. Here we sought to identify quantitative measures of data quality for T1-weighted volumes, describe how these measures relate to cortical thickness, and delineate how this in turn may bias inference regarding associations with age in youth. Three highly-trained raters provided manual ratings of 1840 raw T1-weighted volumes. These images included a training set of 1065 images from Philadelphia Neurodevelopmental Cohort (PNC), a test set of 533 images from the PNC, as well as an external test set of 242 adults acquired on a different scanner. Manual ratings were compared to automated quality measures provided by the Preprocessed Connectomes Project's Quality Assurance Protocol (QAP), as well as FreeSurfer's Euler number, which summarizes the topological complexity of the reconstructed cortical surface. Results revealed that the Euler number was consistently correlated with manual ratings across samples. Furthermore, the Euler number could be used to identify images scored "unusable" by human raters with a high degree of accuracy (AUC: 0.98-0.99), and out-performed proxy measures from functional timeseries acquired in the same scanning session. The Euler number also was significantly related to cortical thickness in a regionally heterogeneous pattern that was consistent across datasets and replicated prior results. Finally, data quality both inflated and obscured associations with age during adolescence. Taken together, these results indicate that reliable measures of data quality can be automatically derived from T1-weighted volumes, and that failing to control for data quality can systematically bias the results of studies of brain maturation.


Subject(s)
Cerebral Cortex/diagnostic imaging , Data Accuracy , Magnetic Resonance Imaging/standards , Neuroimaging/standards , Quality Control , Adolescent , Adult , Cohort Studies , Datasets as Topic , Humans
15.
J Neurosci ; 37(20): 5065-5073, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28432144

ABSTRACT

Developmental structural neuroimaging studies in humans have long described decreases in gray matter volume (GMV) and cortical thickness (CT) during adolescence. Gray matter density (GMD), a measure often assumed to be highly related to volume, has not been systematically investigated in development. We used T1 imaging data collected on the Philadelphia Neurodevelopmental Cohort to study age-related effects and sex differences in four regional gray matter measures in 1189 youths ranging in age from 8 to 23 years. Custom T1 segmentation and a novel high-resolution gray matter parcellation were used to extract GMD, GMV, gray matter mass (GMM; defined as GMD × GMV), and CT from 1625 brain regions. Nonlinear models revealed that each modality exhibits unique age-related effects and sex differences. While GMV and CT generally decrease with age, GMD increases and shows the strongest age-related effects, while GMM shows a slight decline overall. Females have lower GMV but higher GMD than males throughout the brain. Our findings suggest that GMD is a prime phenotype for the assessment of brain development and likely cognition and that periadolescent gray matter loss may be less pronounced than previously thought. This work highlights the need for combined quantitative histological MRI studies.SIGNIFICANCE STATEMENT This study demonstrates that different MRI-derived gray matter measures show distinct age and sex effects and should not be considered equivalent but complementary. It is shown for the first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter volume and cortical thickness, and that females, who are known to have lower gray matter volume than males, have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia Neurodevelopmental Cohort. A clear understanding of normal structural brain development is essential for the examination of brain-behavior relationships, the study of brain disease, and, ultimately, clinical applications of neuroimaging.


Subject(s)
Aging/pathology , Brain/anatomy & histology , Gray Matter/anatomy & histology , Magnetic Resonance Imaging/methods , Adolescent , Child , Connectome/methods , Female , Humans , Male , Organ Size , Reproducibility of Results , Sensitivity and Specificity , Sex Characteristics , Young Adult
16.
PLoS One ; 11(11): e0164677, 2016.
Article in English | MEDLINE | ID: mdl-27812129

ABSTRACT

Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted.


Subject(s)
Blindness/pathology , Blindness/physiopathology , Visual Pathways/pathology , Visual Pathways/physiopathology , Adolescent , Adult , Anisotropy , Female , Humans , Male , Middle Aged , White Matter/pathology , White Matter/physiopathology , Young Adult
17.
Biol Psychiatry ; 80(10): 775-785, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27395327

ABSTRACT

BACKGROUND: Adolescence is a critical period for emotional maturation and is a time when clinically significant symptoms of anxiety and depression increase, particularly in females. However, few studies relate developmental differences in symptoms of anxiety and depression to brain development. Cerebral blood flow is one brain phenotype that is known to have marked developmental sex differences. METHODS: We investigated whether developmental sex differences in cerebral blood flow mediated sex differences in anxiety and depression symptoms by capitalizing on a large sample of 875 youths who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. Perfusion was quantified on a voxelwise basis using arterial spin-labeled magnetic resonance imaging at 3T. Perfusion images were related to trait and state anxiety using general additive models with penalized splines, while controlling for gray matter density on a voxelwise basis. Clusters found to be related to anxiety were evaluated for interactions with age, sex, and puberty. RESULTS: Trait anxiety was associated with elevated perfusion in a network of regions including the amygdala, anterior insula, and fusiform cortex, even after accounting for prescan state anxiety. Notably, these relationships strengthened with age and the transition through puberty. Moreover, higher trait anxiety in postpubertal females was mediated by elevated perfusion of the left amygdala. CONCLUSIONS: Taken together, these results demonstrate that differences in the evolution of cerebral perfusion during adolescence may be a critical element of the affective neurobiological characteristics underlying sex differences in anxiety and mood symptoms.


Subject(s)
Adolescent Development/physiology , Amygdala/physiology , Anxiety , Cerebral Cortex/physiology , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Personality/physiology , Sex Characteristics , Adolescent , Adult , Amygdala/physiopathology , Anxiety/physiopathology , Cerebral Cortex/physiopathology , Child , Cross-Sectional Studies , Female , Humans , Male , Spin Labels , Young Adult
18.
Proc Natl Acad Sci U S A ; 113(17): E2430-9, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27071080

ABSTRACT

The brain continuously influences and perceives the physiological condition of the body. Related cortical representations have been proposed to shape emotional experience and guide behavior. Although previous studies have identified brain regions recruited during autonomic processing, neurological lesion studies have yet to delineate the regions critical for maintaining autonomic outflow. Even greater controversy surrounds hemispheric lateralization along the parasympathetic-sympathetic axis. The behavioral variant of frontotemporal dementia (bvFTD), featuring progressive and often asymmetric degeneration that includes the frontoinsular and cingulate cortices, provides a unique lesion model for elucidating brain structures that control autonomic tone. Here, we show that bvFTD is associated with reduced baseline cardiac vagal tone and that this reduction correlates with left-lateralized functional and structural frontoinsular and cingulate cortex deficits and with reduced agreeableness. Our results suggest that networked brain regions in the dominant hemisphere are critical for maintaining an adaptive level of baseline parasympathetic outflow.


Subject(s)
Frontotemporal Dementia/physiopathology , Functional Laterality/physiology , Parasympathetic Nervous System/physiology , Adult , Aged , Case-Control Studies , Female , Functional Neuroimaging , Gyrus Cinguli/physiology , Heart/physiopathology , Heart Rate/physiology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/physiology
19.
Am J Psychiatry ; 173(5): 517-26, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26806874

ABSTRACT

OBJECTIVE: Disruption of executive function is present in many neuropsychiatric disorders. However, determining the specificity of executive dysfunction across these disorders is challenging given high comorbidity of conditions. Here the authors investigate executive system deficits in association with dimensions of psychiatric symptoms in youth using a working memory paradigm. The authors hypothesize that common and dissociable patterns of dysfunction would be present. METHOD: The authors studied 1,129 youths who completed a fractal n-back task during functional magnetic resonance imaging at 3-T as part of the Philadelphia Neurodevelopmental Cohort. Factor scores of clinical psychopathology were calculated using an item-wise confirmatory bifactor model, describing overall psychopathology as well as four orthogonal dimensions of symptoms: anxious-misery (mood and anxiety), behavioral disturbance (attention deficit hyperactivity disorder and conduct disorder), psychosis-spectrum symptoms, and fear (phobias). The effect of psychopathology dimensions on behavioral performance and executive system recruitment (2-back > 0-back) was examined using both multivariate (matrix regression) and mass-univariate (linear regression) analyses. RESULTS: Overall psychopathology was associated with both abnormal multivariate patterns of activation and a failure to activate executive regions within the cingulo-opercular control network, including the frontal pole, cingulate cortex, and anterior insula. In addition, psychosis-spectrum symptoms were associated with hypoactivation of the left dorsolateral prefrontal cortex, whereas behavioral symptoms were associated with hypoactivation of the frontoparietal cortex and cerebellum. In contrast, anxious-misery symptoms were associated with widespread hyperactivation of the executive network. CONCLUSIONS: These findings provide novel evidence that common and dissociable deficits within the brain's executive system are present in association with dimensions of psychopathology in youth.


Subject(s)
Executive Function/physiology , Mental Disorders/physiopathology , Adolescent , Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Memory, Short-Term/physiology , Neuropsychological Tests
20.
Neuroimage ; 125: 903-919, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26520775

ABSTRACT

BACKGROUND: Diffusion tensor imaging (DTI) is applied in investigation of brain biomarkers for neurodevelopmental and neurodegenerative disorders. However, the quality of DTI measurements, like other neuroimaging techniques, is susceptible to several confounding factors (e.g., motion, eddy currents), which have only recently come under scrutiny. These confounds are especially relevant in adolescent samples where data quality may be compromised in ways that confound interpretation of maturation parameters. The current study aims to leverage DTI data from the Philadelphia Neurodevelopmental Cohort (PNC), a sample of 1601 youths with ages of 8-21 who underwent neuroimaging, to: 1) establish quality assurance (QA) metrics for the automatic identification of poor DTI image quality; 2) examine the performance of these QA measures in an external validation sample; 3) document the influence of data quality on developmental patterns of typical DTI metrics. METHODS: All diffusion-weighted images were acquired on the same scanner. Visual QA was performed on all subjects completing DTI; images were manually categorized as Poor, Good, or Excellent. Four image quality metrics were automatically computed and used to predict manual QA status: Mean voxel intensity outlier count (MEANVOX), Maximum voxel intensity outlier count (MAXVOX), mean relative motion (MOTION) and temporal signal-to-noise ratio (TSNR). Classification accuracy for each metric was calculated as the area under the receiver-operating characteristic curve (AUC). A threshold was generated for each measure that best differentiated visual QA status and applied in a validation sample. The effects of data quality on sensitivity to expected age effects in this developmental sample were then investigated using the traditional MRI diffusion metrics: fractional anisotropy (FA) and mean diffusivity (MD). Finally, our method of QA is compared with DTIPrep. RESULTS: TSNR (AUC=0.94) best differentiated Poor data from Good and Excellent data. MAXVOX (AUC=0.88) best differentiated Good from Excellent DTI data. At the optimal threshold, 88% of Poor data and 91% Good/Excellent data were correctly identified. Use of these thresholds on a validation dataset (n=374) indicated high accuracy. In the validation sample 83% of Poor data and 94% of Excellent data was identified using thresholds derived from the training sample. Both FA and MD were affected by the inclusion of poor data in an analysis of an age, sex and race matched comparison sample. In addition, we show that the inclusion of poor data results in significant attenuation of the correlation between diffusion metrics (FA and MD) and age during a critical neurodevelopmental period. We find higher correspondence between our QA method and DTIPrep for Poor data, but we find our method to be more robust for apparently high-quality images. CONCLUSION: Automated QA of DTI can facilitate large-scale, high-throughput quality assurance by reliably identifying both scanner and subject induced imaging artifacts. The results present a practical example of the confounding effects of artifacts on DTI analysis in a large population-based sample, and suggest that estimates of data quality should not only be reported but also accounted for in data analysis, especially in studies of development.


Subject(s)
Diffusion Tensor Imaging/standards , Neuroimaging/standards , Quality Assurance, Health Care/methods , Adolescent , Area Under Curve , Child , Cohort Studies , Female , Humans , Image Interpretation, Computer-Assisted , Male , ROC Curve , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...