Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 157(12): 124102, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36182413

ABSTRACT

Molecular electronic spectra can be represented in the time domain as auto-correlation functions of the initial vibrational wavepacket. We present a derivation of the harmonic vibrational auto-correlation function that is valid for both real and imaginary harmonic frequencies. The derivation rests on Lie algebra techniques that map otherwise complicated exponential operator arithmetic to simpler matrix formulas. The expressions for the zero- and finite-temperature harmonic auto-correlation functions have been carefully structured both to be free of branch-cut discontinuities and to remain numerically stable with finite-precision arithmetic. Simple extensions correct the harmonic Franck-Condon approximation for the lowest-order anharmonic and Herzberg-Teller effects. Quantitative simulations are shown for several examples, including the electronic absorption spectra of F2, HOCl, CH2NH, and NO2.

2.
J Am Chem Soc ; 144(40): 18518-18525, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36174230

ABSTRACT

We provide compelling experimental and theoretical evidence for the transition state nature of the cyclopropyl cation. Synchrotron photoionization spectroscopy employing coincidence techniques together with a novel simulation based on high-accuracy ab initio calculations reveal that the cation is unstable via its allowed disrotatory ring-opening path. The ring strains of the cation and the radical are similar, but both ring opening paths for the radical are forbidden when the full electronic symmetries are considered. These findings are discussed in light of the early predictions by Longuet-Higgins alongside Woodward and Hoffman; we also propose a simple phase space explanation for the appearance of the cyclopropyl photoionization spectrum. The results of this work allow the refinement of the cyclopropane C-H bond dissociation energy, in addition to the cyclopropyl radical and cation cyclization energies, via the Active Thermochemical Tables approach.

3.
Phys Chem Chem Phys ; 22(29): 16949-16955, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32672775

ABSTRACT

Hydroperoxides from the ozonolysis of alkenes, in addition to Criegee intermediates, have been proposed as an atmospheric source of OH radicals in the absence of sunlight, but have remained largely elusive due to their reactivity. A weak peroxide bond enables facile OH elimination, and subsequent ß-scission can lead to a variety of decomposition products depending on the nature of the peroxide. In this paper we explore this process theoretically for the simplest ketohydroperoxide, hydroperoxyacetaldehyde (HPA), which is believed to be formed in the ozonolysis of ethylene. Despite it being the most stable C2H4O3 species in this reaction scheme, lower in energy than the starting materials by around 100 kcal mol-1, HPA has only been directly observed once in the ozonolysis of ethylene by photoionization mass spectrometry appearance energy. Here we report predictions of the rotational spectrum of HPA conducted in support of microwave spectroscopy experiments. We suggest a new dissociation path from HPA to glyoxal [HOOCH2CHO → HCOCH2O + OH → CHOCHO + H], supported by thermochemical calculations. We encourage the search for glyoxal using complementary experimental methods, and suggest possible future experimental directions. Evidence of glyoxal formation from ethylene ozonolysis might provide evidence of this underappreciated path in an important and long studied reaction system.

4.
Chemphyschem ; 21(19): 2217-2222, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32628323

ABSTRACT

Unveiling reaction mechanisms by isomer-selective detection of reactive intermediates requires advanced spectroscopic knowledge. We study the photoionization of fulvenone (c-C5 H4 =C=O), a reactive ketene species relevant in catalytic pyrolysis of lignin, which was generated by pyrolysis of 2-methoxy acetophenone. The high-resolution threshold photoelectron spectrum (TPES) with vacuum ultraviolet synchrotron radiation revealed well-resolved vibrational transitions, assigned to ring deformation modes of the cyclopentadiene moiety. The adiabatic ionization energy was determined to be 8.25±0.01 eV and is assigned to the X˜+2 A2 ← X˜1 A1 transition. A broad and featureless band arising at 9 eV is associated with the A˜+2 B1 ← X˜1 A1 excitation. A conical intersection is responsible for the ultrafast relaxation of the fulvenone cation from the A˜+ into the X˜+ state resulting in a featureless and lifetime broadened band. These insights will increase the detection capabilities for fulvenone and thereby help to elucidate reaction mechanisms in lignin catalytic pyrolysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...