Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CEAS Space J ; 13(2): 155-174, 2021.
Article in English | MEDLINE | ID: mdl-34804247

ABSTRACT

The analysis of robotic systems (e.g. landers and rovers) involved in sampling operations on planetary bodies is crucial to ensure mission success, since those operations generate forces that could affect the stability of the robotic system. This paper presents MISTRAL (MultIdisciplinary deSign Tool for Robotic sAmpLing), a novel tool conceived for trade space exploration during early conceptual and preliminary design phases, where a rapid and broad evaluation is required for a very high number of configurations and boundary conditions. The tool rapidly determines the preliminary design envelope of a sampling apparatus to guarantee the stability condition of the whole robotic system. The tool implements a three-dimensional analytical model capable to reproduce several scenarios, being able to accept various input parameters, including the physical and geometrical characteristics of the robotic system, the properties related to the environment and the characteristics related to the sampling system. This feature can be exploited to infer multidisciplinary high-level requirements concerning several other elements of the investigated system, such as robotic arms and footpads. The presented research focuses on the application of MISTRAL to landers. The structure of the tool and the analysis model are presented. Results from the application of the tool to real mission data from NASA's Phoenix Mars lander are included. Moreover, the tool was adopted for the definition of the high-level requirements of the lander for a potential future mission to the surface of Saturn's moon Enceladus, currently under investigation at NASA Jet Propulsion Laboratory. This case study was included to demonstrate the tool's capabilities. MISTRAL represents a comprehensive, versatile, and powerful tool providing guidelines for cognizant decisions in the early and most crucial stages of the design of robotic systems involved in sampling operations on planetary bodies.

2.
Ann N Y Acad Sci ; 1065: 271-84, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16510414

ABSTRACT

A renewed interest in human exploration is flourishing among all the major spacefaring nations. In fact, in the complex scene of planned future space activities, the development of a Moon base and the human exploration of Mars might have the potential to renew the enthusiasm in expanding the human presence beyond the boundaries of Earth. Various initiatives have been undertaken to define scenarios and identify the required infrastructures and related technology innovations. The typical proposed approach follows a multistep strategy, starting with a series of precursor robotic missions to acquire further knowledge of the planet and to select the best potential landing sites, and evolving toward more demanding missions for the development of a surface infrastructure necessary to sustain human presence. The technologies involved in such a demanding enterprise range from typical space technologies, like transportation and propulsion, automation and robotics, rendezvous and docking, entry/reentry, aero-braking, navigation, and deep space communications, to human-specific issues like physiology, psychology, behavioral aspects, and nutritional science for long-duration exposure, that go beyond the traditional boundaries of space activities. Among the required elements to support planetary exploration, both for the precursor robotic missions and to sustain human exploration, rovers and trucks play a key role. A robust level of autonomy will need to be secured to perform preplanned operations, particularly for the surface infrastructure development, and a teleoperated support, either from Earth or from a local base, will enhance the in situ field exploration capability.


Subject(s)
Extraterrestrial Environment , Space Flight , Astronauts , Exobiology , Humans , Life Support Systems , Mars , Moon , Robotics , Spacecraft , United States , United States National Aeronautics and Space Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...