Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(23): 234001, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30776789

ABSTRACT

Ultraviolet light-emitting diodes fabricated from N-polar AlGaN/GaN core-shell nanowires (NWs) with p-i-n structure produced electroluminescence at 365 nm with ∼5× higher intensities than similar GaN homojunction LEDs. The improved characteristics were attributed to localization of spontaneous recombination to the NW core, reduction of carrier overflow losses through the NW shell, and elimination of current shunting. Poisson-drift-diffusion modeling indicated that a shell Al mole fraction of x = 0.1 in Al x Ga1-x N effectively confines electrons and injected holes to the GaN core region. AlGaN overcoat layers targeting this approximate Al mole fraction were found to possess a low-Al-content tip and high-Al-content shell, as determined by scanning transmission electron microscopy. Photoluminescence spectroscopy further revealed the actual Al mole fraction to be NW diameter-dependent, where the tip and shell compositions converged towards the nominal flux ratio for large diameter NWs.

2.
Nano Lett ; 19(2): 1289-1294, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30673247

ABSTRACT

The development of van der Waals (vdW) homojunction devices requires materials with narrow bandgaps and simultaneously high hole and electron mobilities for bipolar transport, as well as methods to image and study spatial variations in carrier type and associated conductivity with nanometer spatial resolution. Here, we demonstrate the general capability of near-field scanning microwave microscopy (SMM) to image and study the local carrier type and associated conductivity in operando by studying ambiploar field-effect transistors (FETs) of the 1D vdW material tellurium in 2D form. To quantitatively understand electronic variations across the device, we produce nanometer-resolved maps of the local carrier equivalence backgate voltage. We show that the global device conductivity minimum determined from transport measurements does not arise from uniform carrier neutrality but rather from the continued coexistence of p-type regions at the device edge and n-type regions in the interior of our micrometer-scale devices. This work both underscores and addresses the need to image and understand spatial variations in the electronic properties of nanoscale devices.

3.
Article in English | MEDLINE | ID: mdl-33343056

ABSTRACT

GaN nanowire LEDs with radial p-i-n junctions were grown by molecular beam epitaxy using N-polar selective area growth on Si(111) substrates. The N-polar selective area growth process facilitated the growth of isolated and high-aspect-ratio n-type NW cores that were not subject to self-shadowing effects during the subsequent growth of a conformal low-temperature Mg:GaN shell. LED devices were fabricated from single-NW and multiple-NW arrays in their as-grown configuration by contacting the n-type core through an underlying conductive GaN layer and the p-type NW shell via a metallization layer. The NW LEDs exhibited rectifying I-V characteristics with a sharp turn-on voltage near the GaN bandgap and low reverse bias leakage current. Under forward bias, the NW LEDs produced electroluminescence with a peak emission wavelength near 380 nm and exhibited a small spectral blueshift with increasing current injection, both of which are consistent with electron recombination in the p-type shell layer through donor-acceptor-pair recombination. These core-shell NW devices demonstrate N-polar selective area growth as an effective technique for producing on-chip nanoscale light sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...