Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Q J R Meteorol Soc ; 145(720): 930-946, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31068734

ABSTRACT

In this work we study the dynamics of the surface-based temperature inversion over the Antarctic Plateau during the polar winter. Using 6 years of observations from the French-Italian Antarctic station Concordia at Dome C, we investigate sudden regime transitions in the strength of the near-surface temperature inversion. Here we define "near-surface" as being within the domain of the 45-m measuring tower. In particular, we consider the strongly nonlinear relation between the 10-m inversion strength (T 10m - T s) and the 10-m wind speed. To this end, all individual events for which the 10-m inversion strength increases or decreases continuously by more than 15 K in time are considered. Composite time series and vertical profiles of wind and temperature reveal specific characteristics of the transition from weak to very strong inversions and vice versa. In contrast to midlatitudes, the largest variations in temperature are not found at the surface but at a height of 10 m. A similar analysis was performed on results from an atmospheric single-column model (SCM). Overall, the SCM results reproduce the observed characteristics of the transitions in the near-surface inversion remarkably well. Using model output, the underlying mechanisms of the regime transitions are identified. The nonlinear relation between inversion strength and wind speed at a given level is explained by variations in the geostrophic wind speed, changes in the depth of the turbulent layer and the vertical divergence of turbulent fluxes. Moreover, the transitions between different boundary layer regimes cannot be explained without considering the contribution of subsidence heating.

2.
Proc Natl Acad Sci U S A ; 114(41): 10858-10863, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973875

ABSTRACT

Snowfall in Antarctica is a key term of the ice sheet mass budget that influences the sea level at global scale. Over the continental margins, persistent katabatic winds blow all year long and supply the lower troposphere with unsaturated air. We show that this dry air leads to significant low-level sublimation of snowfall. We found using unprecedented data collected over 1 year on the coast of Adélie Land and simulations from different atmospheric models that low-level sublimation accounts for a 17% reduction of total snowfall over the continent and up to 35% on the margins of East Antarctica, significantly affecting satellite-based estimations close to the ground. Our findings suggest that, as climate warming progresses, this process will be enhanced and will limit expected precipitation increases at the ground level.

SELECTION OF CITATIONS
SEARCH DETAIL
...