Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29637070

ABSTRACT

Brazil is the largest sugarcane producer and the main sugar exporter in the world. The industrial processes applied by Brazilian mills are very efficient in producing highly purified sugar and ethanol. Literature presents evidence of lack of DNA/protein in these products, regardless of the nature of sugarcane used as raw material. Recently CTNBio, the Brazilian biosafety authority, has approved the first biotechnology-derived sugarcane variety for cultivation, event CTC175-A, which expresses the Cry1Ab protein to control the sugarcane borer (Diatraea saccharalis). The event also expresses neomycin-phosphotransferase type II (NptII) protein used as selectable marker during the transformation process. Because of the high purity of sugar and ethanol produced from genetically modified sugarcane, these end-products should potentially be classified as "pure substances, chemically defined," by Brazilian Biosafety Law No. 11.105. If this classification is to be adopted, these substances are not considered as "GMO derivatives" and fall out of the scope of Law No. 11.105. In order to assess sugar composition and quality, we evaluate Cry1Ab and NptII expression in several sugarcane tissues and in several fractions from laboratory-scale processing of event CTC175-A for the presence of these heterologous proteins as well as for the presence of traces of recombinant DNA. The results of these studies show that CTC175-A presents high expression of Cry1Ab in leaves and barely detectable expression of heterologous proteins in stalks. We also evaluated the presence of ribulose-1,5-bisphosphate carboxylase/oxygenase protein and DNA in the fractions of the industrial processing of conventional Brazilian sugarcane cultivars. Results from both laboratory and industrial processing were concordant, demonstrating that DNA and protein are not detected in the clarified juice and downstream processed fractions, including ethanol and raw sugar, indicating that protein and DNA are removed and/or degraded during processing. In conclusion, the processing of conventional sugarcane and CTC175-A Bt event results in downstream products with no detectable concentrations of heterologous DNA or new protein. These results help in the classification of sugar and ethanol derived from CTC175-A event as pure, chemically defined substances in Brazil and may relieve regulatory burdens in countries that import Brazilian sugar.

2.
Front Plant Sci ; 6: 58, 2015.
Article in English | MEDLINE | ID: mdl-25755657

ABSTRACT

There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches.

3.
J Biol Chem ; 289(48): 33364-77, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25320091

ABSTRACT

Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.


Subject(s)
Cell Membrane/enzymology , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Plant Proteins/biosynthesis , Plant Stems/enzymology , Saccharum/enzymology , UTP-Glucose-1-Phosphate Uridylyltransferase/biosynthesis , Cell Membrane/chemistry , Models, Molecular , Phosphorylation/physiology , Plant Proteins/chemistry , Plant Stems/chemistry , Protein Structure, Tertiary , UTP-Glucose-1-Phosphate Uridylyltransferase/chemistry , Uridine Diphosphate Glucose/biosynthesis , Uridine Diphosphate Glucose/chemistry
4.
Planta ; 237(3): 783-98, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23129215

ABSTRACT

Sugarcane (Saccharum spp.) is the most promising crop for renewable energy. Among the diverse stresses that affect plant productivity, drought stress frequently causes losses in sugarcane fields. Although several studies have addressed plant responses to drought using controlled environments, plant responses under field conditions are largely unknown. Recently, microRNA (miRNA)-mediated post-transcriptional regulation has been described as an important and decisive component in vegetal development and stress resistance modulation. The role of miRNAs in sugarcane responses to drought under field conditions is currently not known. Two sugarcane cultivars differing in drought tolerance were grown in the field with and without irrigation (rainfed) for 7 months. By using small RNA deep sequencing, we were able to identify 18 miRNA families comprising 30 mature miRNA sequences. Among these families, we found 13 mature miRNAs that were differentially expressed in drought-stressed plants. Seven miRNAs were differentially expressed in both cultivars. The target genes for many of the differentially expressed mature miRNAs were predicted, and some of them were validated by quantitative reverse transcription PCR. Among the targets, we found transcription factors, transporters, proteins associated with senescence, and proteins involved with flower development. All of these data increase our understanding of the role of miRNAs in the complex regulation of drought stress in field-grown sugarcane, providing valuable tools to develop new sugarcane cultivars tolerant to drought stress.


Subject(s)
Droughts , MicroRNAs/genetics , Saccharum/genetics , Saccharum/physiology , Transcriptome/genetics , Base Pairing/genetics , Base Sequence , Computational Biology , Dehydration , Gene Expression Profiling , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , MicroRNAs/metabolism , Molecular Sequence Data , Plant Leaves/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Saccharum/growth & development , Stress, Physiological/genetics
5.
PLoS One ; 7(10): e46703, 2012.
Article in English | MEDLINE | ID: mdl-23071617

ABSTRACT

Sugarcane (Saccharum spp.) is one of the most important crops in the world. Drought stress is a major abiotic stress factor that significantly reduces sugarcane yields. However the gene network that mediates plant responses to water stress remains largely unknown in several crop species. Although several microRNAs that mediate post-transcriptional regulation during water stress have been described in other species, the role of the sugarcane microRNAs during drought stress has not been studied. The objective of this work was to identify sugarcane miRNAs that are differentially expressed under drought stress and to correlate this expression with the behavior of two sugarcane cultivars with different drought tolerances. The sugarcane cultivars RB867515 (higher drought tolerance) and RB855536 (lower drought tolerance) were cultivated in a greenhouse for three months and then subjected to drought for 2, 4, 6 or 8 days. By deep sequencing of small RNAs, we were able to identify 18 miRNA families. Among all of the miRNAs thus identified, seven were differentially expressed during drought. Six of these miRNAs were differentially expressed at two days of stress, and five miRNAs were differentially expressed at four days. The expression levels of five miRNAs (ssp-miR164, ssp-miR394, ssp-miR397, ssp-miR399-seq 1 and miR528) were validated by RT-qPCR (quantitative reverse transcriptase PCR). Six precursors and the targets of the differentially expressed miRNA were predicted using an in silico approach and validated by RT-qPCR; many of these targets may play important roles in drought tolerance. These findings constitute a significant increase in the number of identified miRNAs in sugarcane and contribute to the elucidation of the complex regulatory network that is activated by drought stress.


Subject(s)
MicroRNAs/genetics , Plant Leaves/physiology , RNA, Plant/genetics , Saccharum/physiology , Base Composition , Base Sequence , Biofuels , Dehydration , Droughts , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Inverted Repeat Sequences , MicroRNAs/metabolism , MicroRNAs/physiology , Plant Leaves/genetics , Plant Proteins/genetics , RNA, Plant/metabolism , RNA, Plant/physiology , Real-Time Polymerase Chain Reaction , Saccharum/genetics , Sequence Analysis, RNA , Stress, Physiological , Transcriptome
6.
PLoS One ; 7(9): e44697, 2012.
Article in English | MEDLINE | ID: mdl-22984543

ABSTRACT

BACKGROUND: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. CONCLUSIONS/SIGNIFICANCE: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO(2) concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.


Subject(s)
Droughts , Nicotiana/genetics , Plant Proteins/genetics , Saccharum/metabolism , Amino Acid Sequence , Base Sequence , Biomass , Biotechnology/methods , Chlorophyll/metabolism , Molecular Sequence Data , Oxidative Stress , Photosynthesis , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified , Reactive Oxygen Species , Salts/chemistry , Sequence Homology, Amino Acid , Sucrose/metabolism , Transgenes , Water/metabolism
7.
Plant Cell Rep ; 29(8): 857-64, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20480367

ABSTRACT

Transcription mediated by RNA polymerase II depends on a set of different transcription factors to form the pre-initiation complex. TFIIA is involved in the construction of this complex and increases the affinity of TBP for the DNA union region in vitro. In this study, we characterized the ScTFIIAgamma gene, which encodes a homolog of the smaller subunit (gamma) of transcription factor TFIIA in sugarcane. RNA blot analysis showed that ScTFIIAgamma transcripts accumulate in all tissues evaluated, with higher levels in leaf roll and flowers. In situ hybridization showed that ScTFIIAgamma was expressed in different cells of the reproductive meristem. In sugarcane plantlets, methyl jasmonate and absicic acid treatments as well as phosphate starvation had no influence on ScTFIIAgamma transcript accumulation. The subcelullar localization assay demonstrates that ScTFIIAgamma protein is directed to the cell nucleus. The phylogenetic analysis, the expression in several tissues and under different treatments and the nuclear localization are in line with the putative role of ScTFIIAgamma as a subunit of basal transcription factor.


Subject(s)
Plant Proteins/metabolism , Saccharum/genetics , Transcription Factor TFIIA/metabolism , Amino Acid Sequence , Cell Nucleus/genetics , Cloning, Molecular , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , RNA, Plant/genetics , Saccharum/metabolism , Sequence Alignment , Sequence Analysis, DNA , Transcription Factor TFIIA/genetics
8.
Plant Cell Rep ; 28(4): 663-72, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19148648

ABSTRACT

The general transcription factor TFIIH is a multiprotein complex with different enzymatic activities such as helicase, protein kinase and DNA repair. MAT1 (ménage à trois 1) is one of the TFIIH subunits that has kinase activity and it is the third subunit of the cyclin-dependent kinase (CDK)-activating kinase (CAK), CDK7- cyclin H. The main objective of this work was to characterize ScMAT1, a sugarcane gene encoding a MAT1 homolog. Northern blots and in situ hybridization results showed that ScMAT1 was expressed in sugarcane mature leaf, leaf roll and inflorescence, and it was not differentially expressed in any of the other tissues analyzed such us bud and roots. In addition, ScMAT1 was not differentially expressed during different stress conditions and treatment with hormones. In situ hybridization analyses also showed that ScMAT1 was expressed in different cell types during leaf development. In order to identify proteins that interact with ScMAT1, a yeast two hybrid assay with ScMAT1 as bait was used to screen a sugarcane leaf cDNA library. The screening of yeast two hybrids yielded 14 positive clones. One of them is a cytochrome p450 family protein involved in oxidative degradation of toxic compounds. Other clones isolated are also related to plant responses to stress. To determine the subcellular localization of ScMAT1, a ScMAT1-GFP fusion was assayed in onion epidermal cell and the fluorescence was localized to the nucleus, in agreement with the putative role of ScMAT1 as a basal transcription factor.


Subject(s)
Plant Proteins/metabolism , Saccharum/genetics , Transcription Factor TFIIH/metabolism , Amino Acid Sequence , Cloning, Molecular , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Gene Library , Genes, Plant , Molecular Sequence Data , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , RNA, Plant/metabolism , Saccharum/metabolism , Sequence Alignment , Stress, Physiological , Transcription Factor TFIIH/genetics , Two-Hybrid System Techniques
9.
Mol Phylogenet Evol ; 35(1): 196-208, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15737591

ABSTRACT

The epichloë endophytes are systemic, constitutive, and often vertically transmitted fungal symbionts of grass species in subfamily Poöideae. Prior studies indicate that several asexual epichloë endophytes (Neotyphodium species) have evolved directly from sexual (Epichloë) species, whereas others evolved by hybridization between two or more endophyte species. In this paper, we investigate the phylogenies of 27 Neotyphodium spp. isolates from 10 native grass species (in 4 tribes) in 22 populations throughout Argentina. Relationships among these fungi and a worldwide collection of epichloë endophytes were estimated by phylogenetic analysis of sequences from variable portions (mainly introns) of genes for beta-tubulin (tub2) and translation elongation factor 1-alpha (tef1). Most of the Argentine endophyte isolates were interspecific hybrids of Epichloë festucae and E. typhina. Only one isolate was a hybrid of a different ancestry, and three isolates were apparently non-hybrid endophytes. These results indicate that interspecific hybridization, which promotes genetic variation, was common during the evolution of the endophytes of Argentine grasses.


Subject(s)
Genetic Variation , Phylogeny , Poaceae/classification , Poaceae/genetics , Base Sequence , DNA Primers , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...