Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 13(1): 19496, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945677

ABSTRACT

Obesity is the main risk factor for many non-communicable diseases. In clinical practice, unspecific markers are used for the determination of metabolic alterations and inflammation, without allowing the characterization of subjects at higher risk of complications. Circulating microRNAs represent an attractive approach for early screening to identify subjects affected by obesity more at risk of developing connected pathologies. The aim of this study was the identification of circulating free and extracellular vesicles (EVs)-embedded microRNAs able to identify obese patients at higher risk of type 2 diabetes (DM2). The expression data of circulating microRNAs derived from obese patients (OB), with DM2 (OBDM) and healthy donors were combined with clinical data, through network-based methodology implemented by weighted gene co-expression network analysis. The six circulating microRNAs overexpressed in OBDM patients were evaluated in a second group of patients, confirming the overexpression of miR-155-5p in OBDM patients. Interestingly, the combination of miR-155-5p with serum levels of IL-8, Leptin and RAGE was useful to identify OB patients most at risk of developing DM2. These results suggest that miR-155-5p is a potential circulating biomarker for DM2 and that the combination of this microRNA with other inflammatory markers in OB patients can predict the risk of developing DM2.


Subject(s)
Circulating MicroRNA , Diabetes Mellitus, Type 2 , MicroRNAs , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Pilot Projects , MicroRNAs/metabolism , Biomarkers , Obesity/complications , Obesity/genetics , Obesity/pathology
2.
Medicina (Kaunas) ; 58(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36143838

ABSTRACT

Background and Objectives: The prevalence of gestational diabetes mellitus (GDM) significantly varies across different ethnic groups. In particular, Africans, Latinos, Asians and Pacific Islanders are the ethnic groups with the highest risk of GDM. The aim of this study was to evaluate the impact of ethnicity on pregnancy outcomes in GDM. Patients and Methods: n = 399 patients with GDM were enrolled, n = 76 patients of high-risk ethnicity (HR-GDM), and n = 323 of low-risk ethnicity (LR-GDM). Clinical and biochemical parameters were collected during pregnancy until delivery. Fetal and maternal short-term outcomes were evaluated. Results: HR-GDM had significantly higher values of glycosylated hemoglobin checked at 26−29 weeks of gestation (p < 0.001). Gestational age at delivery was significantly lower in HR-GDM (p = 0.03). The prevalence of impaired fetal growth was significantly higher in HR-GDM than LR-GDM (p = 0.009). In logistic regression analysis, the likelihood of impaired fetal growth was seven times higher in HR-GDM than in LR-GDM, after adjustment for pre-pregnancy BMI and gestational weight gain (OR = 7.1 [2.0−25.7] 95% CI, p = 0.003). Conclusions: HR-GDM had worse pregnancy outcomes compared with LR-GDM. An ethnicity-tailored clinical approach might be effective in reducing adverse outcomes in GDM.


Subject(s)
Diabetes, Gestational , Gestational Weight Gain , Body Mass Index , Diabetes, Gestational/epidemiology , Ethnicity , Female , Glycated Hemoglobin , Humans , Pregnancy , Pregnancy Outcome
3.
Front Neurosci ; 13: 1112, 2019.
Article in English | MEDLINE | ID: mdl-31680842

ABSTRACT

Diabetes mellitus is one of the major risk factors for cognitive dysfunction. The pathogenesis of brain impairment caused by chronic hyperglycemia is complex and includes mitochondrial dysfunction, neuroinflammation, neurotransmitters' alteration, and vascular disease, which lead to cognitive impairment, neurodegeneration, loss of synaptic plasticity, brain aging, and dementia. Glucagon-like peptide-1 (GLP-1), a gut released hormone, is attracting attention as a possible link between metabolic and brain impairment. Several studies have shown the influence of GPL-1 on neuronal functions such as thermogenesis, blood pressure control, neurogenesis, neurodegeneration, retinal repair, and energy homeostasis. Moreover, modulation of GLP-1 activity can influence amyloid ß peptide aggregation in Alzheimer's disease (AD) and dopamine (DA) levels in Parkinson's disease (PD). GLP-1 receptor agonists (GLP-1RAs) showed beneficial actions on brain ischemia in animal models, such as the reduction of cerebral infarct area and the improvement of neurological deficit, acting mainly through inhibition of oxidative stress, inflammation, and apoptosis. They might also exert a beneficial effect on the cognitive impairment induced by diabetes or obesity improving learning and memory by modulating synaptic plasticity. Moreover, GLP-1RAs reduced hippocampal neurodegeneration. Besides this, there are growing evidences on neuroprotective effects of these agonists in animal models of neurodegenerative diseases, regardless of diabetes. In PD animal models, GPL-1RAs were able to protect motor activity and dopaminergic neurons whereas in AD models, they seemed to improve nearly all neuropathological features and cognitive functions. Although further clinical studies of GPL-1RAs in humans are needed, they seem to be a promising therapy for diabetes-associated cognitive decline.

4.
J Am Heart Assoc ; 2(3): e000198, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23770972

ABSTRACT

BACKGROUND: Urinary 8-iso-PGF2α, a marker of oxidative stress, is influenced by the activation of NOX2. It is unclear if platelets 8-iso-PGF2α contribute to urinary 8-iso-PGF2α. METHODS AND RESULTS: In a cross-sectional study, platelet, urinary, and serum 8-iso-PGF2α were determined in subjects with downregulation (X-linked chronic granulomatous disease [X-CGD], n=25) and upregulation (type II diabetic patients [T2D], n=121) of NOX2 and 153 controls matched for sex and age. In diabetic patients (n=18), the above variables were repeated before and after 7 days treatment with 100 mg/day aspirin or 100 mg/day aspirin plus 40 mg/day atorvastatin. In vitro study was performed to see the contribution of blood cells to serum 8-iso-PGF2α. Compared with controls, X-CGD patients had lower platelet, serum, and urinary 8-iso-PGF2α values; conversely, diabetic patients had higher values of 8-iso-PGF2α compared with controls. Urinary 8-iso-PGF2α significantly correlated with both platelet and serum 8-iso-PGF2α in the 2 cohorts. A parallel increase of platelet, serum, and urinary 8-iso-PGF2α by aspirin and a parallel decrease by aspirin plus atorvastatin were detected in the interventional study. In vitro study demonstrated that platelets contribute to 37% of serum 8-iso-PGF2α and that only 13% of it is of extravascular origin. CONCLUSIONS: The study suggests that NOX2 contributes to the formation of 8-iso-PGF2α in both platelets and urine. The direct correlation between platelet and urinary 8-iso-PGF2α suggests that, at least partly, urinary 8-iso-PGF2α reflects platelet 8-iso-PGF2α production. Analysis of serum 8-iso-PGF2α may represent a novel tool to investigate the production of 8-iso-PGF2α by blood cells including platelets. CLINICAL TRIAL REGISTRATION: URL: ClinicalTrials.gov. Unique Identifier: NCT01250340.


Subject(s)
Blood Platelets/chemistry , Diabetes Mellitus, Type 2/metabolism , Dinoprost/analogs & derivatives , Granulomatous Disease, Chronic/metabolism , Membrane Glycoproteins/physiology , NADPH Oxidases/physiology , Aged , Cross-Sectional Studies , Dinoprost/analysis , Dinoprost/blood , Dinoprost/urine , Female , Humans , Male , NADPH Oxidase 2
SELECTION OF CITATIONS
SEARCH DETAIL
...