Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Adv ; 7(48): eabg9275, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34818049

ABSTRACT

Ribosomes execute the transcriptional program in every cell. Critical to sustain nearly all cellular activities, ribosome biogenesis requires the translation of ~200 factors of which 80 are ribosomal proteins (RPs). As ribosome synthesis depends on RP mRNA translation, a priority within the translatome architecture should exist to ensure the preservation of ribosome biogenesis capacity, particularly under adverse growth conditions. Here, we show that under critical metabolic constraints characterized by mTOR inhibition, LARP1 complexed with the 40S subunit protects from ribophagy the mRNAs regulon for ribosome biogenesis and protein synthesis, acutely preparing the translatome to promptly resume ribosomes production after growth conditions return permissive. Characterizing the LARP1-protected translatome revealed a set of 5'TOP transcript isoforms other than RPs involved in energy production and in mitochondrial function, among other processes, indicating that the mTOR-LARP1-5'TOP axis acts at the translational level as a primary guardian of the cellular anabolic capacity.

2.
Nat Commun ; 12(1): 6060, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663789

ABSTRACT

The nucleotide analogue azacitidine (AZA) is currently the best treatment option for patients with high-risk myelodysplastic syndromes (MDS). However, only half of treated patients respond and of these almost all eventually relapse. New treatment options are urgently needed to improve the clinical management of these patients. Here, we perform a loss-of-function shRNA screen and identify the histone acetyl transferase and transcriptional co-activator, CREB binding protein (CBP), as a major regulator of AZA sensitivity. Compounds inhibiting the activity of CBP and the closely related p300 synergistically reduce viability of MDS-derived AML cell lines when combined with AZA. Importantly, this effect is specific for the RNA-dependent functions of AZA and not observed with the related compound decitabine that is only incorporated into DNA. The identification of immediate target genes leads us to the unexpected finding that the effect of CBP/p300 inhibition is mediated by globally down regulating protein synthesis.


Subject(s)
Azacitidine/pharmacology , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/genetics , Protein Biosynthesis/drug effects , RNA/metabolism , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , DNA Methylation/drug effects , Humans , Leukemia, Myelomonocytic, Acute
3.
Blood ; 137(24): 3351-3364, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33512431

ABSTRACT

MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eµ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC. The loss of either protein reduced RiBi, protein synthesis, and cell proliferation to similar extents. However, only RPL7a depletion induced p53-mediated apoptosis through the selective proteasomal degradation of antiapoptotic MCL-1, indicating the critical role of the IRBC in this mechanism. Strikingly, low concentrations of the US Food and Drug Administration-approved anticancer RNA polymerase I inhibitor Actinomycin D (ActD) dramatically prolonged the survival of mice harboring Trp53+/+;Eµ-Myc but not Trp53-/-;Eµ-Myc lymphomas, which provides a rationale for treating MYC-driven B-cell lymphomas with ActD. Importantly, the molecular effects of ActD on Eµ-Myc cells were recapitulated in human B-cell lymphoma cell lines, highlighting the potential for ActD as a therapeutic avenue for p53 wild-type lymphoma.


Subject(s)
Cell Cycle Checkpoints/drug effects , Dactinomycin/pharmacology , Lymphoma, B-Cell , Myeloid Cell Leukemia Sequence 1 Protein , Proteolysis/drug effects , Proto-Oncogene Proteins c-myc , Ribosomes , Tumor Suppressor Protein p53 , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Male , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ribosomal Proteins/antagonists & inhibitors , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
4.
EMBO J ; 39(13): e103838, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32484960

ABSTRACT

Many oncogenes enhance nucleotide usage to increase ribosome content, DNA replication, and cell proliferation, but in parallel trigger p53 activation. Both the impaired ribosome biogenesis checkpoint (IRBC) and the DNA damage response (DDR) have been implicated in p53 activation following nucleotide depletion. However, it is difficult to reconcile the two checkpoints operating together, as the IRBC induces p21-mediated G1 arrest, whereas the DDR requires that cells enter S phase. Gradual inhibition of inosine monophosphate dehydrogenase (IMPDH), an enzyme required for de novo GMP synthesis, reveals a hierarchical organization of these two checkpoints. We find that the IRBC is the primary nucleotide sensor, but increased IMPDH inhibition leads to p21 degradation, compromising IRBC-mediated G1 arrest and allowing S phase entry and DDR activation. Disruption of the IRBC alone is sufficient to elicit the DDR, which is strongly enhanced by IMPDH inhibition, suggesting that the IRBC acts as a barrier against genomic instability.


Subject(s)
DNA Damage , G1 Phase Cell Cycle Checkpoints , Nucleotides/metabolism , Ribosomes/metabolism , HCT116 Cells , Humans , Nucleotides/genetics , Ribosomes/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
iScience ; 20: 434-448, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31627130

ABSTRACT

Cancer cells rely on mTORC1 activity to coordinate mitogenic signaling with nutrients availability for growth. Based on the metabolic function of E2F1, we hypothesize that glucose catabolism driven by E2F1 could participate on mTORC1 activation. Here, we demonstrate that glucose potentiates E2F1-induced mTORC1 activation by promoting mTORC1 translocation to lysosomes, a process that occurs independently of AMPK activation. We showed that E2F1 regulates glucose metabolism by increasing aerobic glycolysis and identified the PFKFB3 regulatory enzyme as an E2F1-regulated gene important for mTORC1 activation. Furthermore, PFKFB3 and PFK1 were found associated to lysosomes and we demonstrated that modulation of PFKFB3 activity, either by substrate accessibility or expression, regulates the translocation of mTORC1 to lysosomes by direct interaction with Rag B and subsequent mTORC1 activity. Our results support a model whereby a glycolytic metabolon containing phosphofructokinases transiently interacts with the lysosome acting as a sensor platform for glucose catabolism toward mTORC1 activity.

6.
Nat Commun ; 10(1): 3979, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31484926

ABSTRACT

One largely unknown question in cell biology is the discrimination between inconsequential and functional transcriptional events with relevant regulatory functions. Here, we find that the oncofetal HMGA2 gene is aberrantly reexpressed in many tumor types together with its antisense transcribed pseudogene RPSAP52. RPSAP52 is abundantly present in the cytoplasm, where it interacts with the RNA binding protein IGF2BP2/IMP2, facilitating its binding to mRNA targets, promoting their translation by mediating their recruitment on polysomes and enhancing proliferative and self-renewal pathways. Notably, downregulation of RPSAP52 impairs the balance between the oncogene LIN28B and the tumor suppressor let-7 family of miRNAs, inhibits cellular proliferation and migration in vitro and slows down tumor growth in vivo. In addition, high levels of RPSAP52 in patient samples associate with a worse prognosis in sarcomas. Overall, we reveal the roles of a transcribed pseudogene that may display properties of an oncofetal master regulator in human cancers.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Proteins/genetics , Pseudogenes/genetics , RNA-Binding Proteins/genetics , Signal Transduction/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cell Line , Cell Line, Tumor , Female , Gene Expression Profiling/methods , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mice, Nude , Proteins/metabolism , RNA-Binding Proteins/metabolism , RNAi Therapeutics/methods , Transcription, Genetic , Tumor Burden/genetics , Xenograft Model Antitumor Assays/methods , ras Proteins/genetics , ras Proteins/metabolism
7.
Cancer Res ; 79(17): 4348-4359, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31292158

ABSTRACT

The role of MYC in regulating p53 stability as a function of increased ribosome biogenesis is controversial. On the one hand, it was suggested that MYC drives the overexpression of ribosomal proteins (RP)L5 and RPL11, which bind and inhibit HDM2, stabilizing p53. On the other, it has been proposed that increased ribosome biogenesis leads the consumption of RPL5/RPL11 into nascent ribosomes, reducing p53 levels and enhancing tumorigenesis. Here, we show that the components that make up the recently described impaired ribosome biogenesis checkpoint (IRBC) complex, RPL5, RPL11, and 5S rRNA, are reduced following MYC silencing. This leads to a rapid reduction in p53 protein half-life in an HDM2-dependent manner. In contrast, MYC induction leads to increased ribosome biogenesis and p53 protein stabilization. Unexpectedly, there is no change in free RPL5/RPL11 levels, but there is a striking increase in IRBC complex bound to HDM2. Our data support a cell-intrinsic tumor-suppressor response to MYC expression, which is presently being exploited to treat cancer. SIGNIFICANCE: Oncogenic MYC induces the impaired ribosome biogenesis checkpoint, which could be potentially targeted for cancer treatment.


Subject(s)
Proto-Oncogene Proteins c-myc/genetics , Ribosomes/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation , Humans , Protein Biosynthesis , Protein Stability , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , RNA, Ribosomal, 5S/genetics , RNA, Ribosomal, 5S/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Tumor Suppressor Protein p53/genetics
9.
Mol Cell ; 67(1): 55-70.e4, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28673543

ABSTRACT

Ribosomal protein (RP) expression in higher eukaryotes is regulated translationally through the 5'TOP sequence. This mechanism evolved to more rapidly produce RPs on demand in different tissues. Here we show that 40S ribosomes, in a complex with the mRNA binding protein LARP1, selectively stabilize 5'TOP mRNAs, with disruption of this complex leading to induction of the impaired ribosome biogenesis checkpoint (IRBC) and p53 stabilization. The importance of this mechanism is underscored in 5q− syndrome, a macrocytic anemia caused by a large monoallelic deletion, which we found to also encompass the LARP1 gene. Critically, depletion of LARP1 alone in human adult CD34+ bone marrow precursor cells leads to a reduction in 5'TOP mRNAs and the induction of p53. These studies identify a 40S ribosome function independent of those in translation that, with LARP1, mediates the autogenous control of 5'TOP mRNA stability, whose disruption is implicated in the pathophysiology of 5q− syndrome.


Subject(s)
Autoantigens/metabolism , Protein Biosynthesis , RNA 5' Terminal Oligopyrimidine Sequence , RNA Stability , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Anemia, Macrocytic/genetics , Anemia, Macrocytic/metabolism , Autoantigens/genetics , Bone Marrow Cells/metabolism , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 5/metabolism , HCT116 Cells , Humans , Multiprotein Complexes , Protein Binding , RNA Interference , RNA, Messenger/genetics , Ribonucleoproteins/genetics , Ribosomal Proteins/genetics , Ribosomes/genetics , Time Factors , Transfection , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , SS-B Antigen
10.
Nature ; 547(7661): 109-113, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28658205

ABSTRACT

Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.


Subject(s)
Adenosylmethionine Decarboxylase/metabolism , Multiprotein Complexes/metabolism , Polyamines/metabolism , Prostatic Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Adenosylmethionine Decarboxylase/immunology , Animals , Cell Proliferation , Enzyme Activation , Everolimus/therapeutic use , Humans , Male , Mechanistic Target of Rapamycin Complex 1 , Metabolomics , Mice , Multiprotein Complexes/antagonists & inhibitors , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Protein Stability , S-Adenosylmethionine/analogs & derivatives , S-Adenosylmethionine/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors
11.
Oncotarget ; 6(29): 28057-70, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26356814

ABSTRACT

In addition to being a master regulator of cell cycle progression, E2F1 regulates other associated biological processes, including growth and malignancy. Here, we uncover a regulatory network linking E2F1 to lysosomal trafficking and mTORC1 signaling that involves v-ATPase regulation. By immunofluorescence and time-lapse microscopy we found that E2F1 induces the movement of lysosomes to the cell periphery, and that this process is essential for E2F1-induced mTORC1 activation and repression of autophagy. Gain- and loss-of-function experiments reveal that E2F1 regulates v-ATPase activity and inhibition of v-ATPase activity repressed E2F1-induced lysosomal trafficking and mTORC1 activation. Immunoprecipitation experiments demonstrate that E2F1 induces the recruitment of v-ATPase to lysosomal RagB GTPase, suggesting that E2F1 regulates v-ATPase activity by enhancing the association of V0 and V1 v-ATPase complex. Analysis of v-ATPase subunit expression identified B subunit of V0 complex, ATP6V0B, as a transcriptional target of E2F1. Importantly, ATP6V0B ectopic-expression increased v-ATPase and mTORC1 activity, consistent with ATP6V0B being responsible for mediating the effects of E2F1 on both responses. Our findings on lysosomal trafficking, mTORC1 activation and autophagy suppression suggest that pharmacological intervention at the level of v-ATPase may be an efficacious avenue for the treatment of metastatic processes in tumors overexpressing E2F1.


Subject(s)
E2F1 Transcription Factor/metabolism , Multiprotein Complexes/metabolism , Neoplasms/pathology , Protein Transport/physiology , TOR Serine-Threonine Kinases/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Autophagy/physiology , Blotting, Western , Cell Line, Tumor , Chromatin Immunoprecipitation , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1 , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Transfection
12.
Biochim Biophys Acta ; 1849(7): 812-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25735853

ABSTRACT

The ability to translate genetic information into functional proteins is considered a landmark in evolution. Ribosomes have evolved to take on this responsibility and, although there are some differences in their molecular make-up, both prokaryotes and eukaryotes share a common structural architecture and similar underlying mechanisms of protein synthesis. Understanding ribosome function and biogenesis has been the focus of extensive research since the early days of their discovery. In the last decade however, new and unexpected roles have emerged that place deregulated ribosome biogenesis and protein synthesis at the crossroads of pathological settings, particularly cancer, revealing a set of novel cellular checkpoints. Moreover, it is also becoming evident that mTOR signaling, which regulates an array of anabolic processes, including ribosome biogenesis, is often exploited by cancer cells to sustain proliferation through the upregulation of global protein synthesis. The use of pharmacological agents that interfere with ribosome biogenesis and mTOR signaling has proven to be an effective strategy to control cancer development clinically. Here we discuss the most recent findings concerning the underlying mechanisms by which mTOR signaling controls ribosome production and the potential impact of ribosome biogenesis in tumor development. This article is part of a Special Issue entitled: Translation and Cancer.


Subject(s)
Neoplasm Proteins/metabolism , Neoplasms/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Ribosomes/genetics , TOR Serine-Threonine Kinases/genetics
13.
Cancer Res ; 73(14): 4185-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23687347

ABSTRACT

Patient stratification according to drug responses, together with the discovery of novel antitumor targets, is leading to a new era of personalized cancer treatments. With the aim of identifying emerging pathways and the challenges faced by clinicians during clinical trials, the IDIBELL Cancer Conference on Personalized Cancer Medicine took place in Barcelona on December 3-4, 2012. This conference brought together speakers working in different areas of cancer research (epigenetics, metabolism and the mTOR pathway, cell death and the immune system, clinical oncology) to discuss the latest developments in personalized cancer medicine.


Subject(s)
Epigenomics/methods , Neoplasms/genetics , Neoplasms/metabolism , Precision Medicine/methods , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , Humans , Neoplasms/drug therapy
15.
J Cell Physiol ; 226(7): 1763-70, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21506108

ABSTRACT

Inhibitor of differentiation-1 (Id-1) is a member of helix-loop-helix (HLH) family of proteins that regulate gene transcription through their inhibitory binding to basic-HLH transcription factors. Similarly to other members of this family, Id-1 is involved in the repression of cell differentiation and activation of cell growth. The dual function of Id-1, inhibition of differentiation, and stimulation of cell proliferation, might be interdependent, as cell differentiation is generally coupled with the exit from the cell cycle. Fibroblast growth factor-2 (FGF-2) has been reported to play multiple roles in different biological processes during development of the central nervous system (CNS). In addition, FGF-2 has been described to induce "neuronal-like" differentiation and trigger apoptosis in neuroblastoma SK-N-MC cells. Although regulation of Id-1 protein by several mitogenic factors is well-established, little is known about the role of FGF-2 in the regulation of Id-1. Using human neuroblastoma cell line, SK-N-MC, we found that treatment of these cells with FGF-2 resulted in early induction of both Id-1 mRNA and protein. The induction occurs within 1 h from FGF-2 treatment and is mediated by ERK1/2 pathway, which in turn stimulates expression of the early growth response-1 (Egr-1) transcription factor. We also demonstrate direct interaction of Egr-1 with Id-1 promoter in vitro and in cell culture. Finally, inhibition of Id-1 expression results in G(2) /M accumulation of FGF-2-treated cells and delayed cell death.


Subject(s)
Apoptosis , Brain Neoplasms/metabolism , Early Growth Response Protein 1/metabolism , Fibroblast Growth Factor 2/metabolism , Inhibitor of Differentiation Protein 1/metabolism , Neuroblastoma/metabolism , Binding Sites , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Cycle , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Inhibitor of Differentiation Protein 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Promoter Regions, Genetic , RNA Interference , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Time Factors , Transfection , Up-Regulation
16.
J Biol Chem ; 286(11): 9205-15, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21233200

ABSTRACT

Disposal of damaged proteins and protein aggregates is a prerequisite for the maintenance of cellular homeostasis and impairment of this disposal can lead to a broad range of pathological conditions, most notably in brain-associated disorders including Parkinson and Alzheimer diseases, and cancer. In this respect, the Protein Quality Control (PQC) pathway plays a central role in the clearance of damaged proteins. The Hsc/Hsp70-co-chaperone BAG3 has been described as a new and critical component of the PQC in several cellular contexts. For example, the expression of BAG3 in the rodent brain correlates with the engagement of protein degradation machineries in response to proteotoxic stress. Nevertheless, little is known about the molecular events assisted by BAG3. Here we show that ectopic expression of BAG3 in glioblastoma cells leads to the activation of an HSF1-driven stress response, as attested by transcriptional activation of BAG3 and Hsp70. BAG3 overexpression determines an accumulation of ubiquitinated proteins and this event requires the N-terminal region, WW domain of BAG3 and the association of BAG3 with Hsp70. The ubiquitination mainly occurs on BAG3-client proteins and the inhibition of proteasomal activity results in a further accumulation of ubiquitinated clients. At the cellular level, overexpression of BAG3 in glioblastoma cell lines, but not in non-glial cells, results in a remarkable decrease in colony formation capacity and this effect is reverted when the binding of BAG3 to Hsp70 is impaired. These observations provide the first evidence for an involvement of BAG3 in the ubiquitination and turnover of its partners.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glioblastoma/metabolism , HSP70 Heat-Shock Proteins/metabolism , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/metabolism , Ubiquitination , Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Apoptosis Regulatory Proteins , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/genetics , HSP70 Heat-Shock Proteins/genetics , HeLa Cells , Heat Shock Transcription Factors , Humans , Mice , Neoplasm Proteins/genetics , Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics
18.
J Cell Biochem ; 108(5): 1117-24, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19777443

ABSTRACT

The Bcl-2-associated athanogene, BAG, protein family through their BAG domain associates with the heat shock protein 70 (HSP-70) and modulates its chaperone activity. One member of this family, BAG3, appears to play an important role in protein homeostasis, as its expression promotes cell survival. Expression of BAG3 is enhanced by a variety of stress-inducing agents. Here we describe a role for BAG3 to modulate transcription of its own promoter through a positive feedback loop involving its 5'-UTR sequence. Activation of the BAG3 promoter is mediated by the BAG domain and is independent of BAG3 association with the UTR sequence. Autoactivation of the BAG3 gene is observed in several cultures of human glial cells including gliomas, but not in several other non-glial cell lines such as He La and others. Results from cell fractionation and immunocytochemistry showed BAG3 in the cytoplasm as well as the nuclei of glial cells. These observations suggest that BAG3 gene expression is controlled by its own product and that this may be critical for the biological activity of BAG3 in some cell types.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Transcriptional Activation , 5' Untranslated Regions , Apoptosis Regulatory Proteins , Base Sequence , Binding Sites , Cells, Cultured , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Sequence Data , Neuroglia/metabolism , Neuroglia/ultrastructure , Organ Specificity , Promoter Regions, Genetic , Protein Structure, Tertiary , Up-Regulation
19.
J Gen Virol ; 90(Pt 7): 1629-1640, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19282432

ABSTRACT

Polyomavirus JC (JCV) infects oligodendrocytes and astrocytes in the brain and is the cause of the demyelinating disease progressive multifocal leukoencephalopathy (PML). In cell culture, JCV infection is characterized by severe damage to cellular DNA, which begins early in infection, and a viral cytopathic effect, which is observed late in infection. Nevertheless, these JCV-infected cells show a low level of apoptosis, at both the early and late stages of infection. This suggests that there is conflicting interplay between viral anti-apoptotic pathways that seek to optimize virus production, e.g. through T antigen (T-Ag)-p53 interaction, and cellular pro-apoptotic pathways that seek to eliminate virally infected cells. The apoptosis regulatory protein BAG3 is a member of the human Bcl-2-associated athanogene (BAG) family of proteins, which function as molecular co-chaperones through their interaction with Hsc70/Hsp70 and function in the regulation of the cellular stress response, proliferation and apoptosis. This study showed that BAG3 protein is downregulated upon JCV infection and that this effect is mediated by JCV T-Ag via repression of the BAG3 promoter. The site of action of T-Ag was mapped to an AP2 site in the BAG3 promoter, and gel shift and chromatin immunoprecipitation assays showed that T-Ag inhibited AP2 binding to this site, resulting in downregulation of BAG3 promoter expression. Using BAG3 and T-Ag expression and BAG3 siRNA, it was found that BAG3 and T-Ag had antagonistic effects on the induction of apoptosis, being anti-apoptotic and pro-apoptotic, respectively. The significance of these interactions to the JCV life cycle is discussed.


Subject(s)
Adaptor Proteins, Signal Transducing/biosynthesis , Antigens, Polyomavirus Transforming/metabolism , Gene Expression Regulation , JC Virus/physiology , Repressor Proteins/metabolism , Apoptosis Regulatory Proteins , Astrocytes/virology , Binding Sites , Cells, Cultured , Chromatin Immunoprecipitation/methods , Electrophoretic Mobility Shift Assay/methods , Fatty Acid-Binding Proteins/antagonists & inhibitors , Humans , Promoter Regions, Genetic , Protein Binding
20.
Ann Neurol ; 64(4): 379-87, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18688812

ABSTRACT

OBJECTIVE: Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease of the white matter affecting immunocompromised patients that results from the cytolytic destruction of glial cells by the human neurotropic JC virus (JCV). According to one model, during the course of immunosuppression, JCV departs from its latent state in the kidney and after entering the brain, productively infects and destroys oligodendrocytes. The goal of this study was to test the hypothesis that JCV may reside in a latent state in a specific region of the brains of immunocompetent (non-PML) individuals without any neurological conditions. METHODS: Gene amplification was performed together with immunohistochemistry to examine the presence of JCV DNA sequences and expression of its genome in five distinct regions of the brain from seven immunocompetent non-PML individuals. RESULTS: Although no viral proteins were expressed in any of these cases, fragments of the viral DNA were present in various regions of normal brain. Laser-capture microdissection showed the presence of JCV DNA in oligodendrocytes and astrocytes, but not in neurons. INTERPRETATION: The detection of fragments of viral DNA in non-PML brain suggests that JCV has full access to all regions of the brain in immunocompetent individuals. Thus, should the immune system become impaired, the passing and/or the resident virus may gain the opportunity to express its genome and initiate its lytic cycle in oligodendrocytes. The brain as a site of JCV latency is a possibility.


Subject(s)
Brain/metabolism , Brain/virology , DNA, Viral/metabolism , JC Virus/genetics , Adult , Aged , Base Sequence , Brain/pathology , Female , Humans , Leukoencephalopathy, Progressive Multifocal/metabolism , Leukoencephalopathy, Progressive Multifocal/pathology , Male , Microdissection/methods , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...