Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 51(98): 17406-9, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26465590

ABSTRACT

The diffusion of p-nitrotoluene vapours into polymer or dendrimer sensing films follows Super Case II dynamics in which the quenching efficiency is strongly correlated to an accelerating analyte front propagating through the neat film rather than being reliant on exciton diffusion.


Subject(s)
Dendrimers/chemistry , Explosive Agents/analysis , Toluene/analogs & derivatives , Adsorption , Diffusion , Explosive Agents/chemistry , Fluorescence , Kinetics , Toluene/analysis , Toluene/chemistry
2.
Inorg Chem ; 51(5): 2821-31, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22339288

ABSTRACT

We use a combination of low temperature, high field magnetic circular dichroism, absorption, and emission spectroscopy with relativistic time-dependent density functional calculations to reveal a subtle interplay between the effects of chemical substitution and spin-orbit coupling (SOC) in a family of iridium(III) complexes. Fluorination at the ortho and para positions of the phenyl group of fac-tris(1-methyl-5-phenyl-3-n-propyl-[1,2,4]triazolyl)iridium(III) cause changes that are independent of whether the other position is fluorinated or protonated. This is demonstrated by a simple linear relationship found for a range of measured and calculated properties of these complexes. Further, we show that the phosphorescent radiative rate, k(r), is determined by the degree to which SOC is able to hybridize T(1) to S(3) and that k(r) is proportional to the inverse fourth power of the energy gap between these excitations. We show that fluorination in the para position leads to a much larger increase of the energy gap than fluorination at the ortho position. Theory is used to trace this back to the fact that fluorination at the para position increases the difference in electron density between the phenyl and triazolyl groups, which distorts the complex further from octahedral symmetry, and increases the energy separation between the highest occupied molecular orbital (HOMO) and the HOMO-1. This provides a new design criterion for phosphorescent iridium(III) complexes for organic optoelectronic applications. In contrast, the nonradiative rate is greatly enhanced by fluorination at the ortho position. This may be connected to a significant redistribution of spectral weight. We also show that the lowest energy excitation, 1A, has almost no oscillator strength; therefore, the second lowest excitation, 2E, is the dominant emissive state at room temperature. Nevertheless the mirror image rule between absorption and emission is obeyed, as 2E is responsible for both absorption and emission at all but very low (<10 K) temperatures.

3.
Appl Environ Microbiol ; 77(20): 7339-44, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21856839

ABSTRACT

The role of curli expression in attachment of Escherichia coli O157:H7 to glass, Teflon, and stainless steel (SS) was investigated through the creation of csgA knockout mutants in two isolates of E. coli O157:H7. Attachment assays using epifluorescence microscopy and measurements of the force of adhesion of bacterial cells to the substrates using atomic force microscopy (AFM) force mapping were used to determine differences in attachment between wild-type (wt) and csgA-negative (ΔcsgA) strains following growth in four different media. The hydrophobicity of the cells was determined using contact angle measurements (CAM) and bacterial adhesion to hydrocarbons (BATH). The attachment assay results indicated that ΔcsgA strains attached to glass, Teflon, and SS surfaces in significantly different numbers than their wt counterparts in a growth medium-dependent fashion (P < 0.05). However, no clear correlation was seen between attachment numbers, surface type, or growth medium. No correlation was seen between BATH and CAM results (R(2) < 0.70). Hydrophobicity differed between the wt and ΔcsgA in some cases in a growth medium- and method-dependent fashion (P < 0.05). AFM force mapping revealed no significant difference in the forces of adhesion to glass and SS surfaces between wt and ΔcsgA strains (P > 0.05) but a significantly greater force of adhesion to Teflon for one of the two wt strains than for its ΔcsgA counterpart (P < 0.05). This study shows that CsgA production by E. coli O157:H7 may alter attachment behavior in some environments; however, further investigation is required in order to determine the exact relationship between CsgA production and attachment to abiotic surfaces.


Subject(s)
Bacterial Adhesion , Environmental Microbiology , Escherichia coli O157/physiology , Escherichia coli Proteins/metabolism , Culture Media/chemistry , Escherichia coli O157/genetics , Escherichia coli O157/metabolism , Escherichia coli Proteins/genetics , Gene Knockout Techniques , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Microscopy, Fluorescence , Surface Properties
4.
J Colloid Interface Sci ; 357(1): 239-42, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21353230

ABSTRACT

To be suitable for reducing water evaporation, monolayers need to be easy to apply and also spread quickly across the surface of water. However, the choice of monolayer often involves a compromise between spreading rate and evaporation resistance. Because emulsions of the monolayer material have been suggested as a way to improve spreading, emulsions were made with the long-chain alcohols hexadecanol, octadecanol and eicosanol using the non-ionic surfactants Brij 78 and Tween 60 as emulsifying agents. The emulsions of octadecanol and eicosanol spread faster than the corresponding powder. However there was no improvement in the spreading of hexadecanol emulsion due to a significant amount of the material dispersing into the bulk water instead of spreading at the interface. The choice of emulsifier to stabilise the emulsions is critical for effective evaporation resistance. Whereas the octadecanol emulsion made with Brij 78 showed improved evaporation resistance, the emulsion with Tween 60 had an appreciably lower evaporation resistance than powdered octadecanol. One limitation of the emulsion application method is the poor spreading on surfaces with an already high surface pressure.

5.
Lett Appl Microbiol ; 49(1): 1-7, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19291206

ABSTRACT

An understanding of the mechanisms which facilitate the attachment of Escherichia coli and other bacterial species to abiotic surfaces is desired by numerous industries including the food and medical industries. Numerous studies have attempted to explain bacterial attachment as a function of bacterial properties such as cellular surface charge, hydrophobicity and outer membrane proteins amongst others. Conflicting evidence in the literature both for and against a positive relationship may arise from the nature of the test methods used to measure them. A handful of recent studies utilizing technologies such as atomic force microscopy have begun to look at bacterial attachment at a single cell and molecular level. These studies may provide the information required to fully understand the underlying factors which influence bacterial cell attachment to abiotic surfaces. A number of issues in determining the influential factors of bacterial attachment have been identified from the literature: a lack of standardization and sensitivity of methods, as well as the value of measuring bulk properties of a number of cells rather than the behaviour of single cells which may overlook key interactions at a molecular level. These issues will need to be addressed in future studies in this area.


Subject(s)
Bacterial Adhesion , Escherichia coli/physiology , Escherichia coli/chemistry , Humans , Organelles/physiology
6.
Biophys J ; 95(10): 4829-36, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18708453

ABSTRACT

The structures of films of pulmonary surfactant protein B (SP-B) and mixtures of SP-B and dipalmitoylphosphatidylcholine (DPPC) at the air/water interface have been studied by neutron reflectometry and Langmuir film balance methods. From the film balance studies, we observe that the isotherms of pure DPPC and SP-B/DPPC mixtures very nearly overlay one another at very high pressures, suggesting that the SP-B is being excluded from the film. The use of multiple contrasts with neutron reflectometry at a range of surface pressures has enabled the mixing and squeeze out of the DPPC and SP-B mixtures to be studied. We can identify the SP-B component of the interfacial structure and its position as a function of surface pressure. The mixtures are initially a homogeneous layer at low surface pressures. At higher surface pressures, the SP-B is squeezed out of the lipid layer into the subphase, with the first signs detected at 30 mN m(-1). At 50 mN m(-1), the subphase is almost completely excluded from the DPPC layer, with the SP-B content significantly reduced. Only a small amount of DPPC appears to be associated with the squeezed out SP-B.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Neutron Activation Analysis/methods , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein B/ultrastructure , Molecular Conformation
7.
J Chem Phys ; 123(21): 214705, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16356059

ABSTRACT

Grazing incidence x-ray-diffraction investigations of the structures of Langmuir-Blodgett films of cadmium behenate with 1, 2, 3, 5, and 21 monolayers are reported. The single monolayer film, deposited on a hydrophilic substrate, showed a hexagonal structure, whereas the bilayer film, deposited on a hydrophobic substrate, had a rectangular structure with herringbone orientation of the acyl chains. With multilayer films formed on a hydrophilic substrate, it was possible to detect that the hexagonal structure of the first layer was retained when additional layers were deposited and that the additional layers had the same rectangular structure as the bilayer.


Subject(s)
Fatty Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers , Molecular Structure , X-Ray Diffraction
8.
Adv Colloid Interface Sci ; 91(2): 163-219, 2001 May 25.
Article in English | MEDLINE | ID: mdl-11392356

ABSTRACT

Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-trans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern. Multilayer films of the acids show only a single-step order-disorder transition at the melting point. This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached. Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed. In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains.


Subject(s)
Fatty Acids/chemistry , Salts/chemistry , Fatty Acids, Nonesterified/chemistry , Kinetics , Molecular Conformation , Thermodynamics
9.
AIDS Res Hum Retroviruses ; 14(17): 1543-51, 1998 Nov 20.
Article in English | MEDLINE | ID: mdl-9840287

ABSTRACT

We have found that the hemolytic and cytotoxic activities of myristoylated Nef N-terminal peptides require a net positive charge in the first seven amino residues of the sequence. The activities are considerably less dependent on the secondary structure of the peptides. Film balance studies showed that both active and inactive peptides interacted with neutral phospholipid monolayers, suggesting that binding to neutral lipids was not a sufficient condition for lytic activity. It was also found that nonmyristoylated N-terminal peptide did not interact to the same extent with the monolayer, indicating that myristoylation was essential for lipid interaction. It is considered that the positively charged residues of the proximate N terminus of Nef interact with acidic lipids of biological membranes, reinforcing the weak membrane-targeting properties of the myristyl chain. Parallels are drawn between this mode of interaction with membranes and that of members of the Src family of proteins, which are also myristoylated and have positively charged residues in their proximate N termini. In particular, these proteins and Nef also have serine residues in their proximal N-terminal regions, which when phosphorylated could neutralize the positive charge and thus provide a mechanism for modulating membrane interaction.


Subject(s)
Gene Products, nef/chemistry , Gene Products, nef/physiology , HIV-1/physiology , Protein Structure, Secondary , Amino Acid Sequence , Animals , Hemolysis , Humans , Membrane Fusion , Molecular Sequence Data , Myristic Acid , Peptides/chemistry , Peptides/physiology , Sheep , Structure-Activity Relationship , nef Gene Products, Human Immunodeficiency Virus
10.
J Synchrotron Radiat ; 5(Pt 3): 500-2, 1998 May 01.
Article in English | MEDLINE | ID: mdl-15263558

ABSTRACT

A multiple-imaging-plate detector system and focusing monochromator have been developed and successfully applied to the time-resolved study of phase transitions in Langmuir-Blodgett films by grazing-incidence X-ray diffraction (GIXD). The monochromator described here combines fixed-exit-beam height with sagittal focusing of the second crystal. The design is similar to that of Matsushita et al. [Matsushita, Ishikawa & Oyanagi (1986). Nucl. Instrum. Methods, A246, 377-379], with the exception that the motion of the first crystal is achieved via a computer-controlled X-Y translation table rather than a set of cams. The second crystal is a ribbed Si(111) wafer mounted in a four-point bending mechanism. The first reported application of imaging plates to a GIXD study was carried out by our group and proved to be very successful in the determination of thin-film structure [Foran, Peng, Steitz, Barnes & Gentle (1996). Langmuir, 12, 774-777]. To extend the capabilities of this system, an imaging-plate camera was designed and built which can accommodate up to 13 imaging plates (40 x 20 cm) inside the vacuum chamber of the main diffractometer at the Australian Beamline at the Photon Factory.

11.
J Synchrotron Radiat ; 5(Pt 2): 107-11, 1998 Mar 01.
Article in English | MEDLINE | ID: mdl-16687811

ABSTRACT

A multiple imaging-plate (IP) detector system and focusing monochromator have been developed and successfully applied to the time-resolved study of phase transitions in Langmuir-Blodgett (LB) films by grazing-incidence X-ray diffraction (GIXD). The first reported application of imaging plates to a GIXD study was carried out by our group and proved to be very successful in the determination of thin-film structure [Foran, Peng, Steitz, Barnes & Gentle (1996). Langmuir, 12, 774-777]. To extend the capabilities of this system, an IP camera was designed and built which can accommodate up to 13 IPs (40 x 20 cm) inside the vacuum chamber of the main diffractometer at the Australian Beamline at the Photon Factory. The camera allows the enclosed IPs to be successively exposed and stored inside the diffractometer for later scanning. The focusing monochromator employed in this technique combines fixed exit-beam height with sagittal focusing of the second crystal and delivers a gain in flux of >/=20 times when measured through a 0.1 x 0.1 mm aperture. The utility of the system incorporating the IP camera and the focusing monochromator has been demonstrated through the study of temperature-dependent phase transitions in LB films of metal fatty acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...