Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Ann Neurol ; 84(4): 485-496, 2018 10.
Article in English | MEDLINE | ID: mdl-30066433

ABSTRACT

OBJECTIVE: The basis for clinical variation related to underlying progressive supranuclear palsy (PSP) pathology is unknown. We performed a genome-wide association study (GWAS) to identify genetic determinants of PSP phenotype. METHODS: Two independent pathological and clinically diagnosed PSP cohorts were genotyped and phenotyped to create Richardson syndrome (RS) and non-RS groups. We carried out separate logistic regression GWASs to compare RS and non-RS groups and then combined datasets to carry out a whole cohort analysis (RS = 367, non-RS = 130). We validated our findings in a third cohort by referring to data from 100 deeply phenotyped cases from a recent GWAS. We assessed the expression/coexpression patterns of our identified genes and used our data to carry out gene-based association testing. RESULTS: Our lead single nucleotide polymorphism (SNP), rs564309, showed an association signal in both cohorts, reaching genome-wide significance in our whole cohort analysis (odds ratio = 5.5, 95% confidence interval = 3.2-10.0, p = 1.7 × 10-9 ). rs564309 is an intronic variant of the tripartite motif-containing protein 11 (TRIM11) gene, a component of the ubiquitin proteasome system (UPS). In our third cohort, minor allele frequencies of surrogate SNPs in high linkage disequilibrium with rs564309 replicated our findings. Gene-based association testing confirmed an association signal at TRIM11. We found that TRIM11 is predominantly expressed neuronally, in the cerebellum and basal ganglia. INTERPRETATION: Our study suggests that the TRIM11 locus is a genetic modifier of PSP phenotype and potentially adds further evidence for the UPS having a key role in tau pathology, therefore representing a target for disease-modifying therapies. Ann Neurol 2018;84:485-496.


Subject(s)
Genetic Loci/genetics , Genetic Variation/genetics , Phenotype , Supranuclear Palsy, Progressive/diagnosis , Supranuclear Palsy, Progressive/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
2.
J Neuropathol Exp Neurol ; 76(7): 605-619, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28591867

ABSTRACT

Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was >60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (>90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity.


Subject(s)
Aging/pathology , Astrocytes/metabolism , Astrocytes/pathology , Tauopathies/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Severity of Illness Index
3.
Biomech Model Mechanobiol ; 16(3): 907-920, 2017 06.
Article in English | MEDLINE | ID: mdl-27933417

ABSTRACT

The mechanical characterization of brain tissue is a complex task that scientists have tried to accomplish for over 50 years. The results in the literature often differ by orders of magnitude because of the lack of a standard testing protocol. Different testing conditions (including humidity, temperature, strain rate), the methodology adopted, and the variety of the species analysed are all potential sources of discrepancies in the measurements. In this work, we present a rigorous experimental investigation on the mechanical properties of human brain, covering both grey and white matter. The influence of testing conditions is also shown and thoroughly discussed. The material characterization performed is finally adopted to provide inputs to a mathematical formulation suitable for numerical simulations of brain deformation during surgical procedures.


Subject(s)
Brain/physiology , Models, Biological , Biomechanical Phenomena , Computer Simulation , Humans , Stress, Mechanical
4.
Acta Neuropathol ; 131(1): 87-102, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26659578

ABSTRACT

Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.


Subject(s)
Aging , Astrocytes/cytology , Brain/pathology , Tauopathies/pathology , tau Proteins/metabolism , Animals , Brain/metabolism , Humans , Neuroglia/pathology , Tauopathies/metabolism
5.
Acta Neuropathol Commun ; 3: 9, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25645462

ABSTRACT

BACKGROUND: In rodent models of Parkinson's disease (PD), dopamine neuron loss is accompanied by increased expression of angiotensin II (AngII), its type 1 receptor (AT1), and NADPH oxidase (Nox) in the nigral dopamine neurons and microglia. AT1 blockers (ARBs) stymie such oxidative damage and neuron loss. Whether changes in the AngII/AT1/Nox4 axis contribute to Parkinson neuropathogenesis is unknown. Here, we studied the distribution of AT1 and Nox4 in dopamine neurons in two nigral subregions: the less affected calbindin-rich matrix and the first-affected calbindin-poor nigrosome 1 of three patients, who were clinically asymptomatic, but had nigral dopamine cell loss and Braak stages consistent with a neuropathological diagnosis of PD (prePD). For comparison, five clinically- and neuropathologically-confirmed PD patients and seven age-matched control patients (AMC) were examined. RESULTS: AT1 and Nox4 immunoreactivity was noted in dopamine neurons in both the matrix and the nigrosome 1. The total cellular levels of AT1 in surviving dopamine neurons in the matrix and nigrosome 1 declined from AMC>prePD>PD, suggesting that an AngII/AT1/Nox4 axis orders neurodegenerative progression. In this vein, the loss of dopamine neurons was paralleled by a decline in total AT1 per surviving dopamine neuron. Similarly, AT1 in the nuclei of surviving neurons in the nigral matrix declined with disease progression, i.e., AMC>prePD>PD. In contrast, in nigrosome 1, the expression of nuclear AT1 was unaffected and similar in all groups. The ratio of nuclear AT1 to total AT1 (nuclear + cytoplasmic + membrane) in dopamine neurons increased stepwise from AMC to prePD to PD. The proportional increase in nuclear AT1 in dopamine neurons in nigrosome 1 of prePD and PD patients was accompanied by elevated nuclear expression of Nox4, oxidative damage to DNA, and caspase-3-mediated cell loss. CONCLUSIONS: Our observations are consistent with the idea that AngII/AT1/Nox4 axis-mediated oxidative stress gives rise to the dopamine neuron dysfunction and loss characteristic of the neuropathological and clinical manifestations of PD and suggest that the chance for a neuron to survive increases in association with lower total as well as nuclear AT1 expression. Our results support the need for further evaluation of ARBs as disease-modifying agents in PD.


Subject(s)
Angiotensin II/metabolism , Caspase 3/metabolism , Dopaminergic Neurons/metabolism , Guanosine/metabolism , NADPH Oxidases/metabolism , Parkinson Disease/pathology , Receptor, Angiotensin, Type 1/metabolism , Aged , Aged, 80 and over , Case-Control Studies , Disease Progression , Female , Humans , Male , Oxidative Stress , Parkinson Disease/metabolism , Substantia Nigra/metabolism
7.
J Neural Transm (Vienna) ; 122(7): 957-72, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25239189

ABSTRACT

The BrainNet Europe consortium assessed the reproducibility in the assignment of the type of frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein (TDP) 43 following current recommendations. The agreement rates were influenced by the immunohistochemical (IHC) method and by the classification strategy followed. p62-IHC staining yielded good uniform quality of stains, but the most reliable results were obtained implementing specific Abs directed against the hallmark protein TDP43. Both assessment of the type and the extent of lesions were influenced by the Abs and by the quality of stain. Assessment of the extent of the lesions yielded poor results repeatedly; thus, the extent of pathology should not be used in diagnostic consensus criteria. Whilst 31 neuropathologists typed 30 FTLD-TDP cases, inter-rater agreement ranged from 19 to 100 per cent, being highest when applying phosphorylated TDP43/IHC. The agreement was highest when designating Type C or Type A/B. In contrast, there was a poor agreement when attempting to separate Type A or Type B FTLD-TDP. In conclusion, we can expect that neuropathologist, independent of his/her familiarity with FTLD-TDP pathology, can identify a TDP43-positive FTLD case. The goal should be to state a Type (A, B, C, D) or a mixture of Types (A/B, A/C or B/C). Neuropathologists, other clinicians and researchers should be aware of the pitfalls whilst doing so. Agreement can be reached in an inter-laboratory setting regarding Type C cases with thick and long neurites, whereas the differentiation between Types A and B may be more troublesome.


Subject(s)
Brain/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/pathology , Inclusion Bodies/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Brain/pathology , Europe , Female , Frontotemporal Lobar Degeneration/metabolism , Humans , Male , Neurites/pathology , Neurons/metabolism , Neurons/pathology , Phosphorylation , Retrospective Studies , Sequestosome-1 Protein , Tissue Array Analysis , Ubiquitin/metabolism
8.
Neurobiol Dis ; 74: 392-405, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25533682

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become an accepted treatment for motor symptoms in a subset of Parkinson's disease (PD) patients. The mechanisms why DBS is effective are incompletely understood, but previous studies show that DBS targeted in brain structures other than the STN may modify the microvasculature. However, this has not been studied in PD subjects who have received STN-DBS. Here we investigated the extent and nature of microvascular changes in post-mortem STN samples from STN-DBS PD patients, compared to aged controls and PD patients who had not been treated with STN-DBS. We used immunohistochemical and immunofluorescent methods to assess serial STN-containing brain sections from PD and STN-DBS PD cases, compared to similar age controls using specific antibodies to detect capillaries, an adherens junction and tight junction-associated proteins as well as activated microglia. Cellular features in stained sections were quantified by confocal fluorescence microscopy and stereological methods in conjunction with in vitro imaging tools. We found significant upregulation of microvessel endothelial cell thickness, length and density but lowered activated microglia density and striking upregulation of all analysed adherens junction and tight junction-associated proteins in STN-DBS PD patients compared to non-DBS PD patients and controls. Moreover, in STN-DBS PD samples, expression of an angiogenic factor, vascular endothelial growth factor (VEGF), was significantly upregulated compared to the other groups. Our findings suggest that overexpressed VEGF and downregulation of inflammatory processes may be critical mechanisms underlying the DBS-induced microvascular changes.


Subject(s)
Deep Brain Stimulation , Endothelial Cells/pathology , Microvessels/pathology , Parkinson Disease/pathology , Parkinson Disease/therapy , Subthalamic Nucleus/blood supply , Subthalamic Nucleus/pathology , Aged , Aged, 80 and over , Endothelial Cells/physiology , Female , Fluorescent Antibody Technique , Glucose Transporter Type 1/metabolism , Humans , Immunoglobulin G/blood , Immunohistochemistry , Male , Microglia/pathology , Microglia/physiology , Microvessels/physiopathology , Organ Size , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Tight Junction Proteins/metabolism , Treatment Outcome , Vascular Endothelial Growth Factor A/metabolism
9.
Acta Neuropathol ; 127(1): 53-69, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24240736

ABSTRACT

It is well established that cigarette smoking is hazardous to health and is a risk factor for many chronic diseases. However, its impact on the brain, whether it be from prenatal exposure to maternal cigarette smoking, cerebrovascular disease, Alzheimer's disease (AD) or Parkinson's disease, is still not very clear. Neuroimaging and neuropathological investigations suggest that there are heterogeneous effects of cigarette smoking on the brain. On the one hand, it is quite clear that cigarette smoking causes damage to endothelial cells, resulting in increased risk of cerebrovascular disease. On the other hand, it seems to be associated with different Alzheimer's pathologies in post-mortem brains and experimental models, despite the fact that epidemiological studies clearly indicate a positive correlation between cigarette smoking and increased risk for AD. Interestingly, cigarette smoking appears to be associated with reduced Parkinson's pathology in post-mortem brains. However, although nicotine in cigarettes may have some neuroprotective actions, the effects of all the other toxic compounds in cigarettes cannot be ignored. It is, therefore, our aim to summarize what is known about the neuropathology of cigarette smoking and, in particular, its implications for neurodegenerative diseases.


Subject(s)
Brain/pathology , Cerebrovascular Disorders/pathology , Neurodegenerative Diseases/pathology , Smoking/adverse effects , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Brain/physiopathology , Cerebrovascular Disorders/etiology , Female , Humans , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/physiopathology , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects
10.
Exp Gerontol ; 47(11): 825-33, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22705312

ABSTRACT

Here, we summarise the results after carrying out a large survey regarding the assessment of vascular alterations, both vessel changes and vascular lesions in an inter-laboratory setting. In total, 32 neuropathologists from 22 centres, most being members of BrainNet Europe (BNE), participated by filling out a questionnaire with emphasis on assessment of common vascular alterations seen in the brains of aged subjects. A certain level of harmonisation has been reached among BNE members regarding sectioning of the brain, harvesting of brain tissue for histology and staining used when compared to the survey carried out in 2006 by Pantoni and colleagues. The most significant variability was seen regarding the assessment of severity and of clinical significance of vascular alterations. Two strategies have recently been recommended regarding the assessment of vascular alterations in aged and demented subjects. The National Institute on Aging - Alzheimer's Association (NIA-AA) recommends the assessment of hippocampal sclerosis, vascular brain injury and microvascular lesions in 12 regions. Although this strategy will be easy to follow, the recommendations do not inform how the load of observed alterations should be assessed and when the observed lesions are of significance. Deramecourt and his colleagues recommend an assessment and semiquantitative grading of various pathologies in 4 brain regions. This strategy yielded a total score of 0 to 20 as an estimate of pathology load. It is, however, not clear which score is considered to be of clinical significance. Furthermore, in several BNE trials the semiquantitative assessment has yielded poor agreement rates; an observation that might negatively influence the strategy proposed by Deramecourt and his colleagues. In line with NIA-AA, a dichotomised approach of easily recognisable lesions in a standardised set of brain regions harvested for neuropathological assessment and applying reproducible sampling and staining strategies is recommended by BNE. However, a simple strategy regarding assessment of load of alteration is urgently needed to yield reproducible, and at the same time, comparable results between centres.


Subject(s)
Aging/physiology , Brain/blood supply , Cerebrovascular Circulation , Cerebrovascular Disorders/physiopathology , Dementia/physiopathology , Humans , Reproducibility of Results , Severity of Illness Index , Specimen Handling , Staining and Labeling/methods , Staining and Labeling/standards , Surveys and Questionnaires
11.
Neurobiol Aging ; 33(4): 838.e7-11, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22221882

ABSTRACT

MAPT has been repeatedly linked with Parkinson's disease (PD) in association studies. Although tau deposition may be seen in PD, its relevance to the pathogenesis of the condition remains unclear. The presence of tau-positive inclusions is, however, the defining feature of progressive supranuclear palsy (PSP), which may often be clinically misdiagnosed as idiopathic PD. On a genetic level, variants in MAPT are the strongest risk factor for PSP. These facts raise the question whether the MAPT association in PD results from contamination with unrecognized cases of PSP. Using only neuropathologically proven PD, we show that the MAPT association remains and is independent of the PSP Association.


Subject(s)
Genetic Predisposition to Disease/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Polymorphism, Single Nucleotide/genetics , Risk Factors , tau Proteins/genetics , Female , Genetic Association Studies , Humans , Male , Meta-Analysis as Topic , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/pathology
12.
Clin Ophthalmol ; 3: 235-42, 2009.
Article in English | MEDLINE | ID: mdl-19668572

ABSTRACT

PURPOSE: Interleukin-1beta (IL-1beta) and S100B calcium binding protein B (S100B) have been implicated in the pathogenesis of Alzheimer's disease. Both are present in and around senile plaques and have been shown to increase levels of amyloid precursor protein (APP) mRNA in vitro. However, it is not known how either of these substances affects APP in vivo. METHODS: We have studied the effects of IL-1beta and S100B on the expression and processing of APP using a retinal-vitreal model. We have also investigated the effect of amyloid beta peptide (Abeta) on APP in the same system and the regulation of S100B production by Abeta and IL-1beta from retinal glial cells. RESULTS: Retinal ganglion cells constitutively express APP. However, after intravitreal injection of IL-1beta or Abeta there was a marked reduction in APP levels as detected by Western blotting and IL-1beta produced a decrease in APP immunoreactivity (IR). Nissl staining showed that the integrity of the injected retinas was unchanged after injection. Two days after S100B injection, there was a small reduction in APP-IR but this was accompanied by the appearance of some intensely stained large ganglion cells and there was some up-regulation in APP holoprotein levels on Western blot. Seven days post-S100B injection, these large, highly stained cells had increased in number throughout the retina. Injection of Abeta and IL-1beta also caused an increase in S100B production within the retinal Müller glial cells. CONCLUSION: These results support the hypothesis that S100B (a glial-derived neurotrophic factor) and IL-1beta (a pro-inflammatory cytokine) can modulate the expression and processing of APP in vivo and so may contribute to the progression of Alzheimer's disease.

14.
Acta Neuropathol ; 117(6): 635-52, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19330340

ABSTRACT

When 22 members of the BrainNet Europe (BNE) consortium assessed 31 cases with alpha-synuclein (alphaS) immunoreactive (IR) pathology applying the consensus protocol described by McKeith and colleagues in 2005, the inter-observer agreement was 80%, being lowest in the limbic category (73%). When applying the staging protocol described by Braak and colleagues in 2003, agreement was only 65%, and in some cases as low as 36%. When modifications of these strategies, i.e., McKeith's protocol by Leverenz and colleagues from 2009, Braak's staging by Müller and colleagues from 2005 were applied then the agreement increased to 78 and 82%, respectively. In both of these modifications, a reduced number of anatomical regions/blocks are assessed and still in a substantial number of cases, the inter-observer agreement differed significantly. Over 80% agreement in both typing and staging of alphaS pathology could be achieved when applying a new protocol, jointly designed by the BNE consortium. The BNE-protocol assessing alphaS-IR lesions in nine blocks offered advantages over the previous modified protocols because the agreement between the 22 observers was over 80% in most cases. Furthermore, in the BNE-protocol, the alphaS pathology is assessed as being present or absent and thus the quality of staining and the assessment of the severity of alphaS-IR pathology do not alter the inter-observer agreement, contrary to other assessment strategies. To reach these high agreement rates an entity of amygdala-predominant category was incorporated. In conclusion, here we report a protocol for assessing alphaS pathology that can achieve a high inter-observer agreement for both the assignment to brainstem, limbic, neocortical and amygdala-predominant categories of synucleinopathy and the Braak stages.


Subject(s)
Lewy Body Disease/metabolism , Lewy Body Disease/pathology , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Brain/metabolism , Brain/pathology , Female , Humans , Immunohistochemistry , Lewy Bodies/pathology , Male , Middle Aged , Severity of Illness Index
15.
Acta Neuropathol ; 117(3): 309-20, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19184666

ABSTRACT

beta-Amyloid (A-beta) related pathology shows a range of lesions which differ both qualitatively and quantitatively. Pathologists, to date, mainly focused on the assessment of both of these aspects but attempts to correlate the findings with clinical phenotypes are not convincing. It has been recently proposed in the same way as iota and alpha synuclein related lesions, also A-beta related pathology may follow a temporal evolution, i.e. distinct phases, characterized by a step-wise involvement of different brain-regions. Twenty-six independent observers reached an 81% absolute agreement while assessing the phase of A-beta, i.e. phase 1 = deposition of A-beta exclusively in neocortex, phase 2 = additionally in allocortex, phase 3 = additionally in diencephalon, phase 4 = additionally in brainstem, and phase 5 = additionally in cerebellum. These high agreement rates were reached when at least six brain regions were evaluated. Likewise, a high agreement (93%) was reached while assessing the absence/presence of cerebral amyloid angiopathy (CAA) and the type of CAA (74%) while examining the six brain regions. Of note, most of observers failed to detect capillary CAA when it was only mild and focal and thus instead of type 1, type 2 CAA was diagnosed. In conclusion, a reliable assessment of A-beta phase and presence/absence of CAA was achieved by a total of 26 observers who examined a standardized set of blocks taken from only six anatomical regions, applying commercially available reagents and by assessing them as instructed. Thus, one may consider rating of A-beta-phases as a diagnostic tool while analyzing subjects with suspected Alzheimer's disease (AD). Because most of these blocks are currently routinely sampled by the majority of laboratories, assessment of the A-beta phase in AD is feasible even in large scale retrospective studies.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Cerebral Amyloid Angiopathy/pathology , Cerebral Arteries/metabolism , Cerebral Arteries/pathology , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/biosynthesis , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/physiopathology , Cerebral Arteries/physiopathology , Disease Progression , Female , Humans , Immunohistochemistry , Male , Middle Aged , Reference Values , Reproducibility of Results
16.
Toxicology ; 256(1-2): 92-100, 2009 Feb 04.
Article in English | MEDLINE | ID: mdl-19059454

ABSTRACT

The potential cytotoxic effect of aggregated Abeta(1-42) to neurons that express classical neurotransmitters, including acetylcholine, gamma-amino butyric acid, catecholamines and serotonin was assessed. The cholinergic system has been the central focus of the therapeutic drug strategies in amyloid-depositing pathologies such as Alzheimer's disease. Aggregated Abeta(1-42) has a multisystem cytotoxic effect causing non-specific reduction in immunoreactivity, dysfunction, or loss of retinal nerve cells. The extent of this was investigated using immunocytochemistry, TUNEL staining for apoptosis, and measurement of cell density as well as retinal surface area. There was a differential acute and/or chronic effect of Abeta on choline acetyltransferase, gamma-aminobutyric acid and 5-tryptamine hydroxylase systems, observed with the increasing time course of 6h to 5 months, and a bilateral/systemic effect. In contrast, the overall pattern of catecholaminergic system, as revealed by tyrosine hydroxylase immunoreactivity of the retina, appears to have remained relatively unaffected by Abeta (however this may reflect neuronal loss due to reduction in the retinal surface). This is the first in vivo evidence in a CNS model to show that not only all major neurotransmitter systems are differentially affected by Abeta aggregates but the effect may vary from one transmitter system to another under the same experimental conditions in situ and in a dose- and time-dependent manner.


Subject(s)
Amyloid beta-Peptides/toxicity , Neurotransmitter Agents/metabolism , Retina/physiology , Amyloid beta-Peptides/administration & dosage , Animals , Choline O-Acetyltransferase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Microinjections , Nerve Degeneration/pathology , Neuroglia/drug effects , Neuroglia/pathology , Parasympathetic Nervous System/drug effects , Parasympathetic Nervous System/physiology , Photoreceptor Cells, Vertebrate/drug effects , Rats , Rats, Sprague-Dawley , Retina/drug effects , Retina/metabolism , Retinal Ganglion Cells/drug effects , Tyrosine 3-Monooxygenase/metabolism , Vitreous Body , gamma-Aminobutyric Acid/metabolism
18.
Acta Neuropathol ; 115(5): 533-46, 2008 May.
Article in English | MEDLINE | ID: mdl-18343933

ABSTRACT

Amyloid-beta-protein (Abeta) is generally assessed by neuropathologists in diagnostics. This BrainNet Europe ( http://www.brainnet-europe.org/ ) (15 centres and 26 participants) study was carried out to investigate the reliability of such an assessment. In the first part of this trial, tissue microarray sections were stained with the antibody of each centre's choice. Reflecting the reality, seven antibodies and a plethora of pretreatment strategies were used. Ninety-two percent of the stainings were of good/acceptable quality and the estimation of presence of Abeta aggregates yielded good results. However, a poor agreement was reached particularly regarding quantitative (density) and qualitative (diffuse/cored plaques) results. During a joint meeting, the clone 4G8 was determined to label best the fleecy/diffuse plaques, and thus, this clone and the formic acid pretreatment technique were selected for the second part of this study. Subsequently, all stained sections were of good/acceptable quality and again a high level of concordance of the dichotomized (presence/absence) assessment of plaques and CAA was achieved. However, even when only one antibody was used, the type of Abeta-aggregates (diffuse/cored), type of vessel and Vonsattel grade, were not reliably assigned. Furthermore, the quantification of lesions was far from reliable. In line with the first trial, the agreement while assessing density (some, moderate and many) was unimpressive. In conclusion, we can confirm the utility of immunohistochemical detection of Abeta-protein in diagnostics and research. It is noteworthy that to reach reproducible results a dichotomized assessment of Abeta-immunoreactivity rather than quantification and assignment of various types of lesions should be applied, particularly when comparing results obtained by different neuropathologists.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Information Services , Alzheimer Disease/epidemiology , Europe/epidemiology , Humans , International Cooperation , Neurofibrillary Tangles/pathology , Peptide Fragments , Plaque, Amyloid/pathology , Protein Array Analysis/methods , Staining and Labeling , tau Proteins/metabolism
19.
J Neuropathol Exp Neurol ; 67(2): 155-61, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18219254

ABSTRACT

Dementia is common in Parkinson disease (PD), although its anatomic and pathologic substrates remain undefined. Recently, striatal abnormalities in Lewy body diseases have been described, but their clinical relevance is not clear. Thirty PD cases from the United Kingdom Parkinson's Disease Society Tissue Bank were grouped as demented (PDD; n = 16) and nondemented (PD; n = 14) based on a review of clinical records. The extent of alpha-synuclein, tau, and amyloid beta peptide (Abeta) deposition in the caudate nucleus, putamen, and nucleus accumbens was assessed. All cases showed severe dopaminergic striatal terminal denervation based on tyrosine hydroxylase immunohistochemistry. Alpha-synuclein and tau deposition in the striatum were rare in both groups, but the Abeta burden was significantly greater in the striatum of PD cases with dementia than present in the nondemented PD group. Striatal Abeta deposition was type-independent of Alzheimer disease changes in the cortex and was minimal in nondemented PD cases. We conclude that Abeta deposition in the striatum strongly correlates with dementia in PD.


Subject(s)
Amyloid beta-Peptides/metabolism , Corpus Striatum/metabolism , Dementia/pathology , Parkinson Disease/pathology , Adult , Aged , Aged, 80 and over , Dementia/complications , Female , Humans , Male , Middle Aged , Parkinson Disease/complications , Severity of Illness Index , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism
20.
J Neuropathol Exp Neurol ; 67(2): 125-43, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18219257

ABSTRACT

To determine the reliability of assessment of alpha-synuclein-immunoreactive (alphaS-IR) structures by neuropathologists, 28 evaluators from 17 centers of BrainNet Europe examined current methods and reproducibility of alphaS-IR evaluation using a tissue microarray (TMA) technique. Tissue microarray blocks were constructed of samples from the participating centers that contained alphaS-IR structures. Slides from these blocks were stained in each center and assessed for neuronal perikaryal inclusions, neurites, and glial cytoplasmic inclusions. The study was performed in 2 phases. First, the TMA slides were stained with the antibody of the center's choice. In this phase, 59% of the sections were of good or acceptable quality, and 4 of 9 antibodies used performed consistently. Differences in interpretation and categorization of alphaS-IR structures, however, led to differing results between the laboratories. Prior to the second phase, the neuropathologists participated in a training session on the evaluation of alphaS-IR structures. Based on the results of the first phase, selected antibodies using designated antigen retrieval methods were then applied to TMA slides in the second phase. When the designated methods of both staining and evaluation were applied, all 26 subsequently stained TMA sections evaluated were of good/acceptable quality, and a high level of concordance in the assessment of the presence or absence of specific alphaS-IR structures was achieved. A semiquantitative assessment of alphaS-IR neuronal perikaryal inclusions yielded agreements ranging from 49% to 82%, with best concordance in cortical core samples. These results suggest that rigorous methodology and dichotomized assessment (i.e. determining the presence or absence of alphaS-IR) should be applied, and that semiquantitative assessment can be recommended only for the cortical samples. Moreover, the study demonstrates that there are limitations in the scoring of alphaS-IR structures.


Subject(s)
Brain Diseases/pathology , Brain/metabolism , Brain/pathology , Database Management Systems , alpha-Synuclein/metabolism , Adult , Aged , Aged, 80 and over , Database Management Systems/statistics & numerical data , Europe , Female , Humans , Immunohistochemistry , Male , Microarray Analysis/methods , Middle Aged , Neuroglia/metabolism , Neurons/metabolism , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...