Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Pathol ; 32(3): e13022, 2022 05.
Article in English | MEDLINE | ID: mdl-34585475

ABSTRACT

A preclinical strategy to broaden the search of potentially effective treatments in amyotrophic lateral sclerosis (ALS) relies on identifying factors controlling motor neuron (MN) excitability. These partners might be part of still unknown pathogenic pathways and/or useful for the design of new interventions to affect disease progression. In this framework, the bioactive membrane-derived phospholipid lysophosphatidic acid (LPA) affects MN excitability through LPA receptor 1 (LPA1 ). Furthermore, LPA1  knockdown is neuroprotective in transgenic ALS SOD1-G93A mice. On this basis, we raised the hypothesis that the major LPA-synthesizing ectoenzyme, autotaxin (ATX), regulates MN excitability and is a potential target to modulate disease development in ALS mice. We show here that PF-8380, a specific ATX inhibitor, reduced intrinsic membrane excitability (IME) of hypoglossal MNs in brainstem slices, supporting that baseline ATX activity regulates MN IME. PF-8380-induced alterations were prevented by a small-interfering RNA directed against mRNA for lpa1 . These outcomes support that impact of ATX-originated lysophospholipids on MN IME engages, at least, the G-protein-coupled receptor LPA1 . Interestingly, mRNAatx levels increased in the spinal cord of pre-symptomatic (1-2 months old) SOD1-G93A mice, thus preceding MN loss. The rise in transcripts levels also occurred in cultured spinal cord MNs from SOD1-G93A embryos, suggesting that mRNAatx upregulation in MNs is an etiopathogenic event in the ALS cell model. Remarkably, chronic administration in the drinking water of the orally bioavailable ATX inhibitor PF-8380 delayed MN loss, motor deterioration and prolonged life span in ALS mice. Treatment also led to a reduction in LPA1 -immunoreactive patches in transgenic animals mostly in MNs. These outcomes support that neuroprotective effects of interfering with ATX in SOD1-G93A mice rely, at least in part, on LPA1  knockdown in MNs. Therefore, we propose ATX as a potential target and/or a biomarker in ALS and highlight ATX inhibitors as reasonable tools with therapeutic usefulness for this lethal pathology.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Motor Neurons/metabolism , Nerve Degeneration/pathology , RNA, Messenger/metabolism , Spinal Cord/pathology , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolism
2.
Front Mol Neurosci ; 14: 788039, 2021.
Article in English | MEDLINE | ID: mdl-34938160

ABSTRACT

Intrinsic membrane excitability (IME) sets up neuronal responsiveness to synaptic drive. Several neurotransmitters and neuromodulators, acting through G-protein-coupled receptors (GPCRs), fine-tune motoneuron (MN) IME by modulating background K+ channels TASK1. However, intracellular partners linking GPCRs to TASK1 modulation are not yet well-known. We hypothesized that isoform 2 of rho-kinase (ROCK2), acting as downstream GPCRs, mediates adjustment of MN IME via TASK1. Electrophysiological recordings were performed in hypoglossal MNs (HMNs) obtained from adult and neonatal rats, neonatal knockout mice for TASK1 (task1 -/-) and TASK3 (task3 -/-, the another highly expressed TASK subunit in MNs), and primary cultures of embryonic spinal cord MNs (SMNs). Small-interfering RNA (siRNA) technology was also used to knockdown either ROCK1 or ROCK2. Furthermore, ROCK activity assays were performed to evaluate the ability of various physiological GPCR ligands to stimulate ROCK. Microiontophoretically applied H1152, a ROCK inhibitor, and siRNA-induced ROCK2 knockdown both depressed AMPAergic, inspiratory-related discharge activity of adult HMNs in vivo, which mainly express the ROCK2 isoform. In brainstem slices, intracellular constitutively active ROCK2 (aROCK2) led to H1152-sensitive HMN hyper-excitability. The aROCK2 inhibited pH-sensitive and TASK1-mediated currents in SMNs. Conclusively, aROCK2 increased IME in task3 -/-, but not in task1 -/- HMNs. MN IME was also augmented by the physiological neuromodulator lysophosphatidic acid (LPA) through a mechanism entailing Gαi/o-protein stimulation, ROCK2, but not ROCK1, activity and TASK1 inhibition. Finally, two neurotransmitters, TRH, and 5-HT, which are both known to increase MN IME by TASK1 inhibition, stimulated ROCK2, and depressed background resting currents via Gαq/ROCK2 signaling. These outcomes suggest that LPA and several neurotransmitters impact MN IME via Gαi/o/Gαq-protein-coupled receptors, downstream ROCK2 activation, and subsequent inhibition of TASK1 channels.

3.
Neuropathol Appl Neurobiol ; 47(7): 1004-1018, 2021 12.
Article in English | MEDLINE | ID: mdl-33508894

ABSTRACT

AIMS: Alterations in excitability represent an early hallmark in Amyotrophic Lateral Sclerosis (ALS). Therefore, deciphering the factors that impact motor neuron (MN) excitability offers an opportunity to uncover further aetiopathogenic mechanisms, neuroprotective agents, therapeutic targets, and/or biomarkers in ALS. Here, we hypothesised that the lipokine lysophosphatidic acid (lpa) regulates MN excitability via the G-protein-coupled receptor lpa1 . Then, modulating lpa1 -mediated signalling might affect disease progression in the ALS SOD1-G93A mouse model. METHODS: The influence of lpa-lpa1 signalling on the electrical properties, Ca2+ dynamic and survival of MNs was tested in vitro. Expression of lpa1 in cultured MNs and in the spinal cord of SOD1-G93A mice was analysed. ALS mice were chronically treated with a small-interfering RNA against lpa1 (siRNAlpa1 ) or with the lpa1 inhibitor AM095. Motor skills, MN loss, and lifespan were evaluated. RESULTS: AM095 reduced MN excitability. Conversely, exogenous lpa increased MN excitability by modulating task1 'leak' potassium channels downstream of lpa1 . Lpa-lpa1 signalling evoked an excitotoxic response in MNs via voltage-sensitive calcium channels. Cultured SOD1-G93A MNs displayed lpa1 upregulation and heightened vulnerability to lpa. In transgenic mice, lpa1 was upregulated mostly in spinal cord MNs before cell loss. Chronic administration of either siRNAlpa1 or AM095 reduced lpa1 expression at least in MNs, delayed MN death, improved motor skills, and prolonged life expectancy of ALS mice. CONCLUSIONS: These results suggest that stressed lpa-lpa1 signalling contributes to MN degeneration in SOD1-G93A mice. Consequently, disrupting lpa1 slows down disease progression. This highlights LPA1 signalling as a potential target and/or biomarker in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Motor Neurons/pathology , Receptors, Lysophosphatidic Acid/metabolism , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Disease Progression , Mice, Transgenic , Microglia/pathology , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Spinal Cord/pathology
4.
Nat Commun ; 10(1): 3784, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31439839

ABSTRACT

Disruption in membrane excitability contributes to malfunction and differential vulnerability of specific neuronal subpopulations in a number of neurological diseases. The adaptor protein p11, and background potassium channel TASK1, have overlapping distributions in the CNS. Here, we report that the transcription factor Sp1 controls p11 expression, which impacts on excitability by hampering functional expression of TASK1. In the SOD1-G93A mouse model of ALS, Sp1-p11-TASK1 dysregulation contributes to increased excitability and vulnerability of motor neurons. Interference with either Sp1 or p11 is neuroprotective, delaying neuron loss and prolonging lifespan in this model. Nitrosative stress, a potential factor in human neurodegeneration, stimulated Sp1 expression and human p11 promoter activity, at least in part, through a Sp1-binding site. Disruption of Sp1 or p11 also has neuroprotective effects in a traumatic model of motor neuron degeneration. Together our work suggests the Sp1-p11-TASK1 pathway is a potential target for treatment of degeneration of motor neurons.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Annexin A2/metabolism , Motor Neurons/pathology , Nerve Degeneration/pathology , Nerve Tissue Proteins/genetics , Potassium Channels, Tandem Pore Domain/genetics , S100 Proteins/metabolism , Sp1 Transcription Factor/metabolism , Amyotrophic Lateral Sclerosis/etiology , Animals , Cell Membrane/pathology , Disease Models, Animal , Female , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Membrane Potentials , Mice , Mice, Transgenic , Motor Neurons/cytology , Nerve Degeneration/etiology , Nerve Tissue Proteins/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Primary Cell Culture , Promoter Regions, Genetic , Rats , Sp1 Transcription Factor/genetics , Spinal Cord/cytology , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...