Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 25(17): 1231-3, 2000 Sep 01.
Article in English | MEDLINE | ID: mdl-18066176

ABSTRACT

A Doppler lidar system based on the molecular double-edge technique is described. The system is mounted in a modified van to permit deployment in field operations. The lidar operates with a tripled Nd:YAG laser at 355 nm, a 45-cm-aperture telescope, and a matching azimuth-over-elevation scanner to permit full sky access. Validated atmospheric wind profiles were measured from 1.8 to 35 km with a 178-m vertical resolution. The range-dependent rms deviation of the horizontal wind speed is 0.4-6 m/s. The measured wind speed and direction are in good agreement with the rawinsonde wind measurements made simultaneously from the same location.

2.
Appl Opt ; 37(15): 3097-104, 1998 May 20.
Article in English | MEDLINE | ID: mdl-18273256

ABSTRACT

The theory of the double-edge technique is described by a generalized formulation that substantially extends the capabilities of the edge technique. It uses two edges with opposite slopes located about the laser frequency. This doubles the signal change for a given Doppler shift and yields a factor of 1.6 improvement in the measurement accuracy compared with the single-edge technique. Use of two high-resolution edge filters reduces the effects of Rayleigh scattering on the measurement by as much as an order of magnitude and allows the signal-to-noise ratio to be substantially improved in areas of low aerosol backscatter. We describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined. The effects of Rayleigh scattering are then subtracted from the measurement, and we show that the correction process does not significantly increase the measurement noise for Rayleigh-to-aerosol ratios as high as 10. We show that for small Doppler shifts a measurement accuracy of 0.4 m/s can be obtained for 5000 detected photons, 1.2 m/s for 1000 detected photons, and 3.7 m/s for 50 detected photons for a Rayleigh-to-aerosol ratio of 5. Methods for increasing the dynamic range to more than +/-100 m/s are given.

3.
Appl Opt ; 36(24): 5976-83, 1997 Aug 20.
Article in English | MEDLINE | ID: mdl-18259439

ABSTRACT

We have developed a Doppler lidar system using the edge technique and have made atmospheric lidar wind measurements. Line-of-sight wind profiles with a vertical resolution of 22 m have a standard deviation of 0.40 m /s for a ten-shot average. Day and night lidar measurements of the vector wind have been made for altitudes from 200 to 2000 m. We validated the lidar measurements by comparing them with independent rawinsonde and pilot balloon measurements of wind speed and direction. Good agreement was obtained. The instrumental noise for these data is 0.11 m /s for a 500-shot average, which is in good agreement with the observed minimum value of the standard deviation for the atmospheric measurements. The average standard deviation over 30 mins varied from 1.16 to 0.25 m /s for day and night, respectively. High spatial and temporal resolution lidar profiles of line-of-sight winds clearly show wind shear and turbulent features at the 1 -2-m /s level with a high signal-to-noise ratio and demonstrate the potential of the edge-technique lidar for studying turbulent processes and atmospheric dynamics.

4.
Appl Opt ; 33(24): 5770-7, 1994 Aug 20.
Article in English | MEDLINE | ID: mdl-20935979

ABSTRACT

The edge technique has been used in simple laboratory experiments to demonstrate velocity measurements with an experimental error, standard deviation, as small as 12 cm/s, which represents a Doppler-shift measurement accuracy of 8 parts in 10(10) of the laser frequency. An edge filter with a spectral width 140 times larger than the measurement accuracy achieved is used. The measurements are made in the presence of short-term frequency drifts equivalent to velocities of 5 to 10 m/s, which are eliminated by the differential frequency measurement used in the edge technique. Long-term frequency drifts are compensated for by servo locking the edge to the laser frequency. High accuracy is achieved for a range of locations on the edge from 0.33 to 4.5 fringe half-widths (half-width at half-maximum), a dynamic range greater than 500 times the measurement accuracy.

5.
Appl Opt ; 31(21): 4202-13, 1992 Jul 20.
Article in English | MEDLINE | ID: mdl-20725404

ABSTRACT

The edge technique is a new and powerful method for measuring small frequency shifts. With the edge technique a laser is located on the steep slope of a high-resolution spectral filter, which produces large changes in transmission for small frequency shifts. A differential technique renders the frequency shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is shown to be insensitive to the laser width and shape for widths that are less than the half-width of the edge filter. The theory of the measurement is given with application to the lidar measurement of wind. The edge technique can be used to measure wind with a lidar by using either the aerosol or molecular backscattered signal. Examples of both measurements are presented. Simulations for a ground-based lidar at 1.06 microm using reasonable instrumental parameters are used to show an accuracy for the vector components of the wind that is better than 0.5 m/s from the ground to an altitude of 20 km for a 100-m vertical resolution and a 100-shot average. For a 20-m vertical resolution and a 10-shot average, simulations show an accuracy of better than 0.2 m/s in the first 2 km and better than 0.5 m/s to 5 km.

6.
Appl Opt ; 23(14): 2401, 1984 Jul 15.
Article in English | MEDLINE | ID: mdl-18213008
SELECTION OF CITATIONS
SEARCH DETAIL
...