Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Equine Vet Sci ; 64: 12-16, 2018 May.
Article in English | MEDLINE | ID: mdl-30973146

ABSTRACT

Satisfactory pregnancy rates can now be achieved following the cryopreservation of large equine embryos. Nonetheless, its wide application might be limited by the fact that the cryopreservation of large equine embryos requires a specialized micromanipulation equipment and micromanipulation/vitrification skills. Alternatives should be developed to increase its utilization and widespread application in the commercial equine industry. To determine if large equine embryos are able to remain viable during transport from farms to specialized centers for embryo cryopreservation, we evaluated pregnancy rates following the low-temperature storage of large equine embryos before vitrification. Grade 1 embryos (n = 37) were randomly assigned to six treatments consisting of day of collection (Day 7 or 8 after ovulation) and cooling for 0, 12, or 24 hours before vitrification in a factorial design. Pregnancy rates of Day 7 embryos cooled for 12 and 24 hours were 55.5% and 75%, respectively. Pregnancy rates of Day 8 embryos cooled for 12 and 24 hours were 0 and 16.6%, respectively. Day 7 cooled embryos resulted in higher pregnancy rate compared with Day 8 cooled embryos (64.7% and 7.7%, respectively; P < .05). Pregnancy rate comparison of cooled embryos grouped by diameter showed that embryos <550 µm resulted in a higher pregnancy rate compared with embryos >550 µm (71.4% and 12.5% respectively; P < .05). In conclusion, Day 7 equine embryos up to 550 µm can be cooled to temperatures of 9-12°C for 12 or 24 hours before vitrification and result in satisfactory pregnancy rates.

2.
Theriogenology ; 85(5): 894-903, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26639642

ABSTRACT

Pregnancy rates after cryopreservation of large equine blastocyst stage embryos have remained lower than other domesticated livestock species. It is generally accepted that the embryonic capsule is the primary barrier to cryoprotectant entry into the embryo proper and techniques need to be developed to circumvent this obstacle. Therefore, the objective of this study was to develop an efficient Day 8 equine embryo cryopreservation protocol through blastocyst micromanipulation and vitrification. Grade 1 and 2 embryos recovered from mares (n = 15) 8 days after ovulation were used in these experiments. In experiment 1, the effect of either one- or two-puncture treatments before aspiration of blastocoel fluid and exposure to vitrification solutions was evaluated. No difference was detected in mean embryo volume across treatment groups after exposure to vitrification solutions or after 1, 24, 48, and 72 hours of culture. Percent of embryos re-expanding at 24 hours and percent of embryos showing diameter increase at 48 and 72 hours during in vitro culture were 100%, 83%, and 75% compared with 93%, 67%, and 50% for one- and two-puncture treatment groups, respectively. Capsule loss was 25% for one-puncture and 50% for two-puncture treatment groups. In experiment 2, no difference was detected in mean embryo volume for indirect introduction (aspiration of blastocoel fluid + equilibration) and direct introduction (injection of cryoprotectant into blastocoel cavity) treatment groups, after exposure to dilution solution or to culture medium. There was no difference in mean embryo volume for the indirect and direct introduction treatment groups after 1, 24, 48, and 72 hours of culture. Percent of embryos re-expanding at 24 hours and percent of embryos showing diameter increases at 48 and 72 hours during in vitro culture were 100%, 76.9%, and 69.2%, respectively, for both treatment groups. Those embryos subjected to the direct introduction treatment had a higher (P = 0.05) percent capsule loss (70%) compared with the indirect introduction treatment group (31%). The pregnancy rate after transfer of vitrified expanded Grade 1 blastocysts using the indirect introduction method was 83% (5/6). Three pregnancies were allowed to continue to term and resulted in the birth of three healthy foals. The vitrification protocol used in this study has the potential to become a key tool for the successful cryopreservation of equine expanded blastocysts.


Subject(s)
Blastocyst , Cryopreservation , Horses , Micromanipulation/methods , Vitrification , Animals , Blastocyst/cytology , Blastocyst/physiology , Cell Size , Cell Survival , Cells, Cultured , Embryo Culture Techniques/veterinary , Embryonic Development/physiology , Female , Horses/embryology , Horses/physiology , Micromanipulation/veterinary , Pregnancy , Pregnancy Rate
3.
Biol Reprod ; 81(5): 933-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19587332

ABSTRACT

An asymmetric distribution of the sexes within the left and right uterine horns has been described in multiple species. A series of experiments were conducted to evaluate the sex ratio (% male) of calves gestated in the left and right uterine horns, as well as the sex ratio of embryos originating from the left and right ovaries of cattle. The sex ratio of calves gestated in the right uterine horn of naturally mated cows was significantly higher compared with the sex ratio of calves gestated in the left uterine horn. In addition, the sex ratio of the left and right uterine horns differed significantly from parity. The sex ratio of embryo transfer calves born following transfer to the left and right uterine horns was not significantly different. Additionally, the proportion of male embryos collected from the right uterine horns was significantly greater than from the left uterine horns of superovulated cows. The sex ratio of embryos collected from the left and right uterine horns of unilaterally ovariectomized cows was not significantly different. However, more female than male embryos were produced when left ovary oocytes fertilized in vitro. In conclusion, the results of these experiments demonstrate that a significantly greater proportion of males are gestated in the right uterine horn of cattle and a greater proportion of females in the left. Additionally, the data indicate that sex-specific selection pressure may be applied to embryos by ovarian factors rather than by the uterine environment.


Subject(s)
Embryo, Mammalian/physiology , Ovary/physiology , Pregnancy, Animal , Sex Ratio , Animals , Cattle , Cells, Cultured , Embryo Transfer/veterinary , Female , Fertilization in Vitro/veterinary , Male , Oocytes/cytology , Oocytes/physiology , Ovariectomy , Parity , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , Sex Determination Analysis , Superovulation
SELECTION OF CITATIONS
SEARCH DETAIL
...