Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 70(3): 283-291, 2020 03.
Article in English | MEDLINE | ID: mdl-31961282

ABSTRACT

Exhaust flows from coal-fired electricity-generating plants are determined by averaging flue gas velocities measured at prescribed points in the stack cross section. These velocity measurements are made using EPA-approved differential pressure probes such as the 2-hole S-probe or the 5-hole spherical probe. Measurements using the more accurate 5-hole spherical probes require a time-consuming rotation (or nulling) of the probe to find the yaw angle. We developed a time-saving non-nulling technique using a spherical probe that measures all 3 components of velocity and therefore provides better accuracy than an S-probe. We compared the non-nulling technique with the EPA Method 2F nulling technique at both high (16 m/s) and low (7 m/s) loads in a coal-fired powerplant smokestack. Their excellent mutual agreement (within 0.3% of the flow) demonstrates that the non-nulling technique accurately measures flue gas flows.Implications: Accurate flow measurements are critical for quantifying the levels of greenhouse gases emitted from coal-fired power plant smokestacks. Flow measurement accuracy derives from the annual calibration of stack flow monitors. Calibrations are performed using EPA sanctioned pitot traverse methods called the flow relative accuracy test audit (RATA). This study demonstrates the viability of a new pitot traverse method, herein called the Non-Nulling Method. Testing in a coal-fired power plant stack showed that the new method is 5 times faster to implement than the most accurate EPA pitot traverse method (i.e., Method 2F), yet gives the same or better accuracy.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Power Plants , Coal
SELECTION OF CITATIONS
SEARCH DETAIL
...