Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cytotherapy ; 19(6): 771-782, 2017 06.
Article in English | MEDLINE | ID: mdl-28391986

ABSTRACT

BACKGROUND AIMS: DUOC-01, a cell product being developed to treat demyelinating conditions, is composed of macrophages that arise from CD14+ monocytes in the mononuclear cell (MNC) population of banked cord blood (CB). This article demonstrates that expression of multiple gene products that promote remyelination is rapidly up-regulated during manufacturing of DUOC-01 from either MNC or purified CB CD14+ monocytes. METHODS: Cell cultures were initiated with MNC or with immunoselected CD14+ monocytes isolated from the same CB unit. Cell products present in these cultures after 2 and 3 weeks were compared by three methods. First, quantitative polymerase chain reaction was used to compare expression of 77 transcripts previously shown to be differentially expressed by freshly isolated, uncultured CB CD14+ monocytes and DUOC-01. Second, accumulation of 16 soluble proteins in the culture medium was measured by Bioplex methods. Third, whole transcriptomes of the cell products were compared by microarray analysis. RESULTS: Key transcripts in multiple pathways that promote remyelination were up-regulated in DUOC-01, and substantial secretion of proteins corresponding to many of these transcripts was detected. Cell products manufactured from MNC or from CD14+ monocytes were similar with regard to all metrics. Upregulation of gene products characteristic of DUOC-01 was largely completed within 14 days of culture. CONCLUSION: We demonstrate that expression of multiple gene products that promote remyelination is up-regulated during the first 2 weeks of manufacturing of DUOC-01. Measuring these mechanistically important transcripts and proteins will be useful in monitoring manufacturing, evaluating manufacturing changes, and developing mechanism-based product potency assays.


Subject(s)
Fetal Blood/cytology , Remyelination , Blood Banks , Cells, Cultured , Cord Blood Stem Cell Transplantation , Gene Expression Regulation , Humans , Lipopolysaccharide Receptors/metabolism , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , Myelin Sheath/metabolism , Up-Regulation
2.
JCI Insight ; 1(13): e86667, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27699230

ABSTRACT

Microglia and monocytes play important roles in regulating brain remyelination. We developed DUOC-01, a cell therapy product intended for treatment of demyelinating diseases, from banked human umbilical cord blood (CB) mononuclear cells. Immunodepletion and selection studies demonstrated that DUOC-01 cells are derived from CB CD14+ monocytes. We compared the ability of freshly isolated CB CD14+ monocytes and DUOC-01 cells to accelerate remyelination of the brains of NOD/SCID/IL2Rγnull mice following cuprizone feeding-mediated demyelination. The corpus callosum of mice intracranially injected with DUOC-01 showed enhanced myelination, a higher proportion of fully myelinated axons, decreased gliosis and cellular infiltration, and more proliferating oligodendrocyte lineage cells than those of mice receiving excipient. Uncultured CB CD14+ monocytes also accelerated remyelination, but to a significantly lesser extent than DUOC-01 cells. Microarray analysis, quantitative PCR studies, Western blotting, and flow cytometry demonstrated that expression of factors that promote remyelination including PDGF-AA, stem cell factor, IGF1, MMP9, MMP12, and triggering receptor expressed on myeloid cells 2 were upregulated in DUOC-01 compared to CB CD14+ monocytes. Collectively, our results show that DUOC-01 accelerates brain remyelination by multiple mechanisms and could be beneficial in treating demyelinating conditions.


Subject(s)
Cell- and Tissue-Based Therapy , Fetal Blood/cytology , Monocytes/cytology , Remyelination , Animals , Brain , Disease Models, Animal , Humans , Lipopolysaccharide Receptors , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID
3.
Blood ; 127(19): 2346-54, 2016 05 12.
Article in English | MEDLINE | ID: mdl-26968535

ABSTRACT

Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDH(br)]), along with viable CD45(+) or CD34(+) cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDH(br), CD34(+), and CFU content of 3908 segments over a 5-year period. ALDH(br) (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34(+) (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDH(br) content of the CBU. These results suggest that the ALDH(br) segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Fetal Blood , Flow Cytometry/methods , Hematopoietic Stem Cells , Antigens, CD34/metabolism , Cord Blood Stem Cell Transplantation , Female , Fetal Blood/cytology , Fetal Blood/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Leukocyte Common Antigens/metabolism , Male
4.
Cytotherapy ; 17(9): 1314-26, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26276011

ABSTRACT

BACKGROUND AIMS: Cord blood (CB) transplantation slows neurodegeneration during certain inherited metabolic diseases. However, the number of donor cells in the brain of patients does not appear to be sufficient to provide benefit until several months after transplant. We developed the cell product DUOC-01 to provide therapeutic effects in the early post-transplant period. METHODS: DUOC-01 cultures initiated from banked CB units were characterized by use of time-lapse photomicroscopy during the 21-day manufacturing process. Antigen expression was measured by means of flow cytometry and immunocytochemistry; transcripts for cytokines and enzymes by quantitative real-time polymerase chain reaction; activities of lysosomal enzymes by direct biochemical analysis; alloreactivity of DUOC-01 and of peripheral blood (PB) mononuclear cells (MNC) to DUOC-01 by mixed lymphocyte culture methods; and cytokine secretion by Bioplex assays. RESULTS: DUOC-01 cultures contained highly active, attached, motile, slowly proliferating cells that expressed common (cluster of differentiation [CD]11b, CD14 and Iba1), M1 type (CD16, inducible nitric oxide synthase), and M2-type (CD163, CD206) macrophage or microglia markers. Activities of 11 disease-relevant lysosomal enzymes in DUOC-01 products were similar to those of normal PB cells. All DUOC-01 products secreted interleukin (IL)-6 and IL-10. Accumulation of transforming growth factor-ß, IL-1ß, interferon-γ and TNF-α in supernatants was variable. IL-12, IL-2, IL-4, IL-5 and IL-13 were not detected at significant concentrations. Galactocerebrosidase, transforming growth factor-ß and IL-10 transcripts were specifically enriched in DUOC-01 relative to CB cells. PB MNCs proliferated and released cytokines in response to DUOC-01. DUOC-01 did not proliferate in response to mismatched MNC. CONCLUSIONS: DUOC-01 has potential as an adjunctive cell therapy to myeloablative CB transplant for treatment of inherited metabolic diseases.

5.
Dev Neurosci ; 37(4-5): 349-62, 2015.
Article in English | MEDLINE | ID: mdl-25791742

ABSTRACT

Cerebral palsy (CP) has a significant impact on both patients and society, but therapy is limited. Human umbilical cord blood cells (HUCBC), containing various stem and progenitor cells, have been used to treat various brain genetic conditions. In small animal experiments, HUCBC have improved outcomes after hypoxic-ischemic (HI) injury. Clinical trials using HUCBC are underway, testing feasibility, safety and efficacy for neonatal injury as well as CP. We tested HUCBC therapy in a validated rabbit model of CP after acute changes secondary to HI injury had subsided. Following uterine ischemia at 70% gestation, we infused HUCBC into newborn rabbit kits with either mild or severe neurobehavioral changes. Infusion of high-dose HUCBC (5 × 10(6) cells) dramatically altered the natural history of the injury, alleviating the abnormal phenotype including posture, righting reflex, locomotion, tone, and dystonia. Half the high dose showed lesser but still significant improvement. The swimming test, however, showed that joint function did not restore to naïve control function in either group. Tracing HUCBC with either MRI biomarkers or PCR for human DNA found little penetration of HUCBC in the newborn brain in the immediate newborn period, suggesting that the beneficial effects were not due to cellular integration or direct proliferative effects but rather to paracrine signaling. This is the first study to show that HUCBC improve motor performance in a dose-dependent manner, perhaps by improving compensatory repair processes.


Subject(s)
Cerebral Palsy/therapy , Cord Blood Stem Cell Transplantation/methods , Hypoxia-Ischemia, Brain/complications , Motor Activity/physiology , Paracrine Communication , Animals , Behavior, Animal/physiology , Cerebral Palsy/etiology , Disease Models, Animal , Female , Humans , Pregnancy , Rabbits
6.
Cytotherapy ; 17(6): 803-815, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25770677

ABSTRACT

BACKGROUND AIMS: Cord blood (CB) transplantation slows neurodegeneration during certain inherited metabolic diseases. However, the number of donor cells in the brain of patients does not appear to be sufficient to provide benefit until several months after transplant. We developed the cell product DUOC-01 to provide therapeutic effects in the early post-transplant period. METHODS: DUOC-01 cultures initiated from banked CB units were characterized by use of time-lapse photomicroscopy during the 21-day manufacturing process. Antigen expression was measured by means of flow cytometry and immunocytochemistry; transcripts for cytokines and enzymes by quantitative real-time polymerase chain reaction; activities of lysosomal enzymes by direct biochemical analysis; alloreactivity of DUOC-01 and of peripheral blood (PB) mononuclear cells (MNC) to DUOC-01 by mixed lymphocyte culture methods; and cytokine secretion by Bioplex assays. RESULTS: DUOC-01 cultures contained highly active, attached, motile, slowly proliferating cells that expressed common (cluster of differentiation [CD]11b, CD14 and Iba1), M1 type (CD16, inducible nitric oxide synthase), and M2-type (CD163, CD206) macrophage or microglia markers. Activities of 11 disease-relevant lysosomal enzymes in DUOC-01 products were similar to those of normal PB cells. All DUOC-01 products secreted interleukin (IL)-6 and IL-10. Accumulation of transforming growth factor-ß, IL-1ß, interferon-γ and TNF-α in supernatants was variable. IL-12, IL-2, IL-4, IL-5 and IL-13 were not detected at significant concentrations. Galactocerebrosidase, transforming growth factor-ß and IL-10 transcripts were specifically enriched in DUOC-01 relative to CB cells. PB MNCs proliferated and released cytokines in response to DUOC-01. DUOC-01 did not proliferate in response to mismatched MNC. CONCLUSIONS: DUOC-01 has potential as an adjunctive cell therapy to myeloablative CB transplant for treatment of inherited metabolic diseases.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cord Blood Stem Cell Transplantation , Fetal Blood/cytology , Metabolic Diseases/therapy , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell- and Tissue-Based Therapy , Cells, Cultured , Cytokines/metabolism , Flow Cytometry , Humans , Inflammation/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mice
7.
Cytotherapy ; 16(11): 1545-1557, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24972743

ABSTRACT

BACKGROUND AIMS: Delivery of cell-based therapies through the carotid artery with the use of an intra-arterial catheter could introduce aggregates and cause focal ischemia in the brain. We developed a pulse-width flow cytometry method for aggregate detection and quantification. The assay was designed to be used as a cell product release assay in a clinical trial seeking to treat ischemic stroke with sorted cells brightly expressing aldehyde dehydrogenase (ALDH(br) cells) delivered through intra-arterial catheters. METHODS: The forward light scatter pulse-width axis of a flow cytometer was calibrated for particle diameter measurements through the use of traceable standard microspheres and linear regression. As a positive control, Concanavalin A-aggregated cells were counted manually and sorted onto slides to compare with pulse width-determined values. Known numbers of aggregates were spiked into purified singlet cells for quantification. A clinical standard for aggregate count and diameter was determined. The assay was used to qualify catheters with the use of ALDH(br) cells. RESULTS: The pulse-width axis was highly linear for microsphere diameter (r(2) > 0.99), which allowed for size calibration. Microscopically determined counts and diameters corresponded to pulse width-determined values. Known aggregate counts were linear with pulse width-determined aggregate counts (r(2) = 0.98). The limit of detection was determined to be 0.004%. Flow of ALDH(br) cells through catheters did not generate aggregates. The final method to be used as a release assay for the stroke clinical trial was tested successfully on samples from volunteer donors. CONCLUSIONS: The pulse-width aggregate detection assay provides a reliable, reproducible, accurate and rapid means of detection, classification and quantification of aggregates in cell therapy products.


Subject(s)
Aldehyde Dehydrogenase/biosynthesis , Brain Ischemia/diagnosis , Cell Aggregation , Cell- and Tissue-Based Therapy/adverse effects , Flow Cytometry , Stroke/pathology , Aldehyde Dehydrogenase/isolation & purification , Bone Marrow Cells/pathology , Brain Ischemia/immunology , Catheters/adverse effects , Gene Expression Regulation , Humans , Limit of Detection , Stem Cells/pathology
8.
Transfusion ; 54(2): 340-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23711284

ABSTRACT

BACKGROUND: Banked unrelated donor umbilical cord blood (CB) has improved access to hematopoietic stem cell transplantation for patients without a suitably matched donor. In a resource-limited environment, ensuring that the public inventory is enriched with high-quality cord blood units (CBUs) addressing the needs of a diverse group of patients is a priority. Identification of donor characteristics correlating with higher CBU quality could guide operational strategies to increase the yield of banked high-quality CBUs. STUDY DESIGN AND METHODS: Characteristics of 5267 CBUs donated to the Carolinas Cord Blood Bank, a public bank participating in the National Cord Blood Inventory, were retrospectively analyzed. Eligible CBUs, collected by trained personnel, were processed using standard procedures. Routine quality and potency metrics (postprocessing total nucleated cell count [post-TNCC], CD34+, colony-forming units [CFUs]) were correlated with maternal, infant, and collection characteristics. RESULTS: High-quality CBUs were defined as those with higher post-TNCC (>1.25 × 10(9)) with CD34+ and CFUs in the upper quartile. Factors associated with higher CD34+ or CFU content included a shorter interval from collection to processing (<10 hr), younger gestational age (34-37 weeks; CD34+ and CFUs), Caucasian race, higher birthweight (>3500 g), and larger collection volumes (>80 mL). CONCLUSIONS: We describe characteristics identifying high-quality CBUs, which can be used to inform strategies for CBU collection for public banks. Efforts should be made to prioritize collections from larger babies born before 38 weeks of gestation. CBUs should be rapidly transported to the processing laboratory. The lower quality of CBUs from non-Caucasian donors highlights the challenges of building a racially diverse public CB inventory.


Subject(s)
Blood Banking/methods , Blood Donors/statistics & numerical data , Fetal Blood , Hematopoietic Stem Cell Transplantation , Academic Medical Centers , Adolescent , Adult , Blood Donors/supply & distribution , Equipment and Supplies , Ethnicity/statistics & numerical data , Female , Gestational Age , Humans , Infant, Newborn , Male , Middle Aged , Multivariate Analysis , North Carolina , Retrospective Studies , Young Adult
9.
Transfusion ; 52(2): 272-83, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21810098

ABSTRACT

BACKGROUND: Engraftment failure and delays, likely due to diminished cord blood unit (CBU) potency, remain major barriers to the overall success of unrelated umbilical cord blood transplantation (UCBT). To address this problem, we developed and retrospectively validated a novel scoring system, the Cord Blood Apgar (CBA), which is predictive of engraftment after UCBT. STUDY DESIGN AND METHODS: In a single-center retrospective study, utilizing a database of 435 consecutive single cord myeloablative UCBTs performed between January 1, 2000, to December 31, 2008, precryopreservation and postthaw graft variables (total nucleated cell, CD34+, colony-forming units, mononuclear cell content, and volume) were initially correlated with neutrophil engraftment. Subsequently, based on the magnitude of hazard ratios (HRs) in univariate analysis, a weighted scoring system to predict CBU potency was developed using a randomly selected training data set and internally validated on the remaining data set. RESULTS: The CBA assigns transplanted CBUs three scores: a precryopreservation score (PCS), a postthaw score (PTS), and a composite score (CS), which incorporates the PCS and PTS values. CBA-PCS scores, which could be used for initial unit selection, were predictive of neutrophil (CBA-PCS ≥ 7.75 vs. <7.75, HR 3.5; p < 0.0001) engraftment. Likewise, CBA-PTS and CS scores were strongly predictive of Day 42 neutrophil engraftment (CBA-PTS ≥ 9.5 vs. <9.5, HR 3.16, p < 0.0001; CBA-CS ≥ 17.75 vs. <17.75, HR 4.01, p < 0.0001). CONCLUSION: The CBA is strongly predictive of engraftment after UCBT and shows promise for optimizing screening of CBU donors for transplantation. In the future, a segment could be assayed for the PTS score providing data to apply the CS for final CBU selection.


Subject(s)
Apgar Score , Blood Donors , Cord Blood Stem Cell Transplantation , Fetal Blood/transplantation , Adolescent , Adult , Blood Banking/methods , Blood Preservation/methods , Blood Preservation/standards , Child , Child, Preschool , Cryopreservation/methods , Cryopreservation/standards , Female , Fetal Blood/cytology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , Young Adult
10.
J Pediatr Surg ; 46(9): 1706-10, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21929978

ABSTRACT

PURPOSE: The mechanism by which partial splenectomy preserves splenic immune function is unknown. Immunoglobulin (Ig) M memory B cells are critical for the immune response against encapsulated bacteria and are reduced in asplenic patients, although it is unknown whether partial splenectomy can preserve memory B cells. We hypothesized that IgM memory B cells (murine B-1a cells) would be preserved after partial splenectomy but not after total splenectomy in mice. METHODS: We performed total splenectomy (n = 17), partial splenectomy (n = 10), or sham laparotomy (n = 16) on C57BL/6J mice. Mice were killed on postoperative day 10 or 30, and peritoneal washings were analyzed by multiparameter flow cytometry for expression of murine B-1a cells (IgM(pos)IgD(dull)CD5(pos)B220(dull)). RESULTS: We found that B-1a cells were significantly reduced after both total and partial splenectomies compared with sham laparotomy in the early postoperative period, although normal levels of B-1a cells returned by postoperative day 30 in mice undergoing partial splenectomy but not total splenectomy. CONCLUSION: Partial splenectomy but not total splenectomy preserves the B-1a B-cell population in mice within 30 days after surgery. Maintenance of these critical B cells may contribute to the preservation of a splenic-dependent immune response after partial splenectomy.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin M , Immunologic Memory , Splenectomy/methods , Animals , Mice , Mice, Inbred C57BL
11.
Biol Blood Marrow Transplant ; 17(9): 1362-74, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21277377

ABSTRACT

Graft failure occurs in approximately 20% of patients after unrelated umbilical cord blood transplantation (UCBT). This could be because of inadequate potency of the cord blood unit (CBU). To this end, we investigated the impact of graft characteristics on engraftment and survival of 435 primarily pediatric (median age: 5.3 years) patients receiving a single-unit unrelated UCBT after myeloablative conditioning from 2000 to 2008. Pre-cryopreservation (pre-cryo) graft characteristics were provided by the banks. Post-thaw parameters were measured on dextran/albumin-washed grafts. Post-thaw recovery of the colony-forming unit (CFU), a biological assay reflecting functional viability of the cord blood cells was the lowest percent age (median 21.2%, mean 36.5%) of the pre-cryo value, regardless of the bank of origin. The cumulative incidences of neutrophil and platelet engraftment were 76.9% (95%, confidence interval [CI], 71.3%-82.5%) and 55% (95% CI, 49.3%-60.7%), respectively. Univariate and separate multivariate models using pre-cryo and post-thaw datasets including clinical parameters identified predictors of engraftment and survival. In multivariate modeling, higher CFU dosing was the only pre-cryo graft characteristic predictive of neutrophil (P = .0024) and platelet engraftment (P = .0063). In the post-thaw model, CFU dose best predicted neutrophil and platelet engraftment (both P < .0001). Comparatively, CD34(+) and total nucleated cell (TNC) were only weakly predictive in post-thaw neutrophil and platelet engraftment models, respectively. In conclusion, CFU dose is a strong independent predictor of engraftment after unrelated UCBT and should be used to assess potency when selecting CBUs for transplantation.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , Graft Survival , Predictive Value of Tests , Stem Cells/cytology , Adolescent , Adult , Blood Platelets/physiology , Cell Count , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Neutrophils/physiology , Retrospective Studies , Stem Cells/physiology , Young Adult
12.
Cytotherapy ; 13(6): 722-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21341973

ABSTRACT

BACKGROUND AIMS: Oligodendrocyte precursor cells (OPC) hold promise as a cellular therapy for demyelinating diseases. The feasibility of using OPC-based therapies in humans depends upon a reliable, readily available source. We have previously described the isolation, expansion and characterization of oligodendrocyte-like cells from fresh human umbilical cord blood (UCB). We now describe the isolation and expansion of OPC from thawed, cryopreserved UCB. METHODS: We thawed cryopreserved UCB units employing a standard clinical protocol, then isolated and plated mononuclear cells under previously established culture conditions. All OPC cultures were trypsinized at 21 days, counted, then characterized by flow cytometry after fixation, permeablization and labeling with the following antibodies: anti-oligodendrocyte marker 4 (O4), anti-oligodendrocyte marker 1 (O1) and anti-myelin basic protein (MBP). OPC were also placed in co-culture with shiverer mouse neuronal cells then stained in situ for beta tubulin III (BT3) and MBP as a functional assay of myelination. RESULTS: The average OPC yield per cryopreserved UCB unit was 64% of that seen with fresh UCB. On flow cytometric analysis, 74% of thawed UCB units yielded cells with an O4-expression level of at least 20% of total events, compared with 95% of fresh UCB units. We observed myelination of shiverer neurons in our functional assay, which could be used as a potency assay for release of OPC cells in phase I human clinical trials. CONCLUSIONS: Our results demonstrate that OPC can be derived reliably from thawed, cryopreserved UCB units, and support the feasibility of using these cells in human clinical trials.


Subject(s)
Fetal Blood/cytology , Oligodendroglia/cytology , Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , Cryopreservation , Flow Cytometry , Humans , Male , Mice , Oligodendroglia/metabolism , Stem Cells/metabolism
13.
J Immunol Methods ; 292(1-2): 59-71, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15350512

ABSTRACT

In this report, we describe a new flow cytometry technique termed flow cytometric high-content screening (FC-HCS) which involves semi-automated processing and analysis of multiparameter flow cytometry samples. As a first test of the FC-HCS technique, we used it to screen a 2000-compound library, called the National Cancer Institute (NCI) Diversity Set, to identify agents that would enhance the anti-lymphoma activity of the therapeutic monoclonal antibody rituximab. FC-HCS identified 15 compounds from the Diversity Set that significantly enhanced the ability of rituximab to inhibit cell cycle progression and induce apoptosis in lymphoma cells. The validity of the screening results was confirmed for several compounds using additional assays of cell proliferation, apoptosis and cell growth. The FC-HCS technique was relatively simple and reliable and could process up to 1000 samples/day on a single flow cytometer. The FC-HCS technique may be useful for a variety of applications including drug discovery, immunologic monitoring of patients, functional genomics studies and tissue engineering efforts.


Subject(s)
Antibodies, Monoclonal/pharmacology , Drug Screening Assays, Antitumor/methods , Flow Cytometry/methods , Lymphoma/drug therapy , Antibodies, Monoclonal, Murine-Derived , Aphidicolin/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Lymphoma/pathology , Phenanthrolines/pharmacology , Rituximab , Topotecan/pharmacology
14.
Br J Haematol ; 122(1): 99-108, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12823351

ABSTRACT

We have developed an approach for identifying primitive mobilized peripheral blood cells (PBSC) that express high levels of aldehyde dehydrogenase (ALDH). PBSC were stained with a fluorescent ALDH substrate, termed BODIPY trade mark -aminoacetaldehyde (BAAA), and then analysed using flow cytometry. A population of cells with a low side scatter (SSC) and a high level of BAAA staining, termed the SSCloALDHbr population, was readily discriminated and comprised a mean of 3 +/- 5% of leukapheresis samples. A mean of 73 +/- 11% of the SSCloALDHbr population expressed CD34 and 56 +/- 25% of all the mobilized CD34+ cells resided within the SSCloALDHbr population. The SSCloALDHbr population was largely depleted of cells with mature phenotypes and enriched for cells with immature phenotypes. Sorted SSCloALDHbr and SSCloALDHbr CD34+ PBSC were enriched for progenitors with the ability to (1) generate colony-forming units (CFU) and long-term culture (LTC)-derived CFU, (2) expand in primary and secondary LTC, and (3) generate multiple cell lineages. In 21 cancer patients who had undergone autologous PBSC transplantation, the number of infused SSCloALDHbr cells/kg highly correlated with the time to neutrophil and platelet engraftment (P < 0.015 and P < 0.003 respectively). In summary, peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation.


Subject(s)
Aldehyde Dehydrogenase/blood , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/enzymology , Neoplasms/therapy , Peripheral Blood Stem Cell Transplantation , Cell Culture Techniques/methods , Cell Separation/methods , Flow Cytometry/methods , Graft Survival , Humans , Immunophenotyping , Leukapheresis , Neoplasms/enzymology , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...