Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22280387

ABSTRACT

BackgroundGuidelines for SARS-CoV-2 have relied on limited data on duration of viral infectiousness and correlation with COVID-19 symptoms and diagnostic testing. MethodsWe enrolled ambulatory adults with acute SARS-CoV-2 infection and performed serial measurements of COVID-19 symptoms, nasal swab viral RNA, nucleocapsid (N) and spike (S) antigens, and replication-competent SARS-CoV-2 by culture. We determined average time from symptom onset to a first negative test result and estimated risk of infectiousness, as defined by a positive viral culture. ResultsAmong 95 adults, median [interquartile range] time from symptom onset to first negative test result was 9 [5] days, 13 [6] days, 11 [4] days, and >19 days for S antigen, N antigen, viral culture growth, and viral RNA by RT-PCR, respectively. Beyond two weeks, viral cultures and N antigen titers were rarely positive, while viral RNA remained detectable among half (26/51) of participants tested 21-30 days after symptom onset. Between 6-10 days from symptom onset, N antigen was strongly associated with viral culture positivity (relative risk=7.61, 95% CI: 3.01-19.2), whereas neither viral RNA nor symptoms were associated with culture positivity. During the 14 days following symptom onset, presence of N antigen (adjusted relative risk=7.66, 95% CI: 3.96-14.82), remained strongly associated with viral culture positivity, regardless of COVID-19 symptoms. ConclusionsMost adults have replication-competent SARS-CoV-2 for 10-14 after symptom onset, and N antigen testing is a strong predictor of viral infectiousness. Within two weeks from symptom onset, N antigen testing, rather than absence of symptoms or viral RNA, should be used to safely discontinue isolation. FundingBill and Melinda Gates Foundation

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22274375

ABSTRACT

Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P=0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8) and a 1.07 (95% confidence interval: 0.58, 1.57; P<0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21253227

ABSTRACT

BackgroundTesting programs have been utilized as part of SARS-CoV-2 mitigation strategies on university campuses, and it is not known which strategies successfully identify cases and contain outbreaks. ObjectiveEvaluation of a testing program to control SARS-CoV-2 transmission at a large university. DesignProspective longitudinal study using remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was (1) exposed to a known case, developed new symptoms, or reported high-risk behavior, (2) a member of a group experiencing an outbreak, or (3) at baseline upon enrollment. SettingAn urban, public university during Autumn quarter of 2020 ParticipantsStudents, staff, and faculty. MeasurementsSARS-CoV-2 PCR testing was conducted, and viral genome sequencing was performed. ResultsWe enrolled 16,476 individuals, performed 29,783 SARS-CoV-2 tests, and detected 236 infections. Greek community affiliation was the strongest risk factor for testing positive. 75.0% of positive cases reported at least one of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). 88.1% of viral genomes (52/59) sequenced from Greek-affiliated students were genetically identical to at least one other genome detected, indicative of rapid SARS-CoV-2 spread within this group, compared to 37.9% (11/29) of genomes from non-Greek students and employees. LimitationsObservational study. ConclusionIn a setting of limited resources during a pandemic, we prioritized testing of individuals with symptoms and high-risk exposure during outbreaks. Rapid spread of SARS- CoV-2 occurred within outbreaks without evidence of further spread to the surrounding community. A testing program focused on high-risk populations may be effective as part of a comprehensive university-wide mitigation strategy to control the SARS-CoV-2 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...