Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 9(6)2023 10 25.
Article in English | MEDLINE | ID: mdl-37832529

ABSTRACT

Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.


Subject(s)
Proton Therapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Phantoms, Imaging , Radiometry
2.
Phys Med Biol ; 68(5)2023 02 20.
Article in English | MEDLINE | ID: mdl-36706460

ABSTRACT

Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.


Subject(s)
Proton Therapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy Planning, Computer-Assisted/methods , Proton Therapy/methods , Radiotherapy Dosage , Phantoms, Imaging , Monte Carlo Method
3.
Med Phys ; 49(4): 2684-2698, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35120278

ABSTRACT

PURPOSE: The radiobiological benefits afforded by spatially fractionated (GRID) radiation therapy pairs well with the dosimetric advantages of proton therapy. Inspired by the emergence of energy-layer specific collimators in pencil beam scanning (PBS), this work investigates how the spot spacing and collimation can be optimized to maximize the therapeutic gains of a GRID treatment while demonstrating the integration of a dynamic collimation system (DCS) within a commercial beamline to deliver GRID treatments and experimentally benchmark Monte Carlo calculation methods. METHODS: GRID profiles were experimentally benchmarked using a clinical DCS prototype that was mounted to the nozzle of the IBA-dedicated nozzle system. Integral depth dose (IDD) curves and lateral profiles were measured for uncollimated and GRID-collimated beamlets. A library of collimated GRID dose distributions were simulated by placing beamlets within a specified uniform grid and weighting the beamlets to achieve a volume-averaged tumor cell survival equivalent to an open field delivery. The healthy tissue sparing afforded by the GRID distribution was then estimated across a range of spot spacings and collimation widths, which were later optimized based on the radiosensitivity of the tumor cell line and the nominal spot size of the PBS system. This was accomplished by using validated models of the IBA universal and dedicated nozzles. RESULTS: Excellent agreement was observed between the measured and simulated profiles. The IDDs matched above 98.7% when analyzed using a 1%/1-mm gamma criterion with some minor deviation observed near the Bragg peak for higher beamlet energies. Lateral profile distributions predicted using Monte Carlo methods agreed well with the measured profiles; a gamma passing rate of 95% or higher was observed for all in-depth profiles examined using a 3%/2-mm criteria. Additional collimation was shown to improve PBS GRID treatments by sharpening the lateral penumbra of the beamlets but creates a trade-off between enhancing the valley-to-peak ratio of the GRID delivery and the dose-volume effect. The optimal collimation width and spot spacing changed as a function of the tumor cell radiosensitivity, dose, and spot size. In general, a spot spacing below 2.0 cm with a collimation less than 1.0 cm provided a superior dose distribution among the specific cases studied. CONCLUSIONS: The ability to customize a GRID dose distribution using different collimation sizes and spot spacings is a useful advantage, especially to maximize the overall therapeutic benefit. In this regard, the capabilities of the DCS, and perhaps alternative dynamic collimators, can be used to enhance GRID treatments. Physical dose models calculated using Monte Carlo methods were experimentally benchmarked in water and were found to accurately predict the respective dose distributions of uncollimated and DCS-collimated GRID profiles.


Subject(s)
Proton Therapy , Monte Carlo Method , Proton Therapy/methods , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
4.
Int J Part Ther ; 8(1): 73-83, 2021.
Article in English | MEDLINE | ID: mdl-34285937

ABSTRACT

PURPOSE: The development of collimating technologies has become a recent focus in pencil beam scanning (PBS) proton therapy to improve the target conformity and healthy tissue sparing through field-specific or energy-layer-specific collimation. Given the growing popularity of collimators for low-energy treatments, the purpose of this work was to summarize the recent literature that has focused on the efficacy of collimators for PBS and highlight the development of clinical and preclinical collimators. MATERIALS AND METHODS: The collimators presented in this work were organized into 3 categories: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators. For each case, the system design and planning methodologies are summarized and intercompared from their existing literature. Energy-specific collimation is still a new paradigm in PBS and the 2 specific collimators tailored toward PBS are presented including the dynamic collimation system (DCS) and the Mevion Adaptive Aperture. RESULTS: Collimation during PBS can improve the target conformity and associated healthy tissue and critical structure avoidance. Between energy-specific collimators and static apertures, static apertures have the poorest dose conformity owing to collimating only the largest projection of a target in the beam's eye view but still provide an improvement over uncollimated treatments. While an external collimator increases secondary neutron production, the benefit of collimating the primary beam appears to outweigh the risk. The greatest benefit has been observed for low- energy treatment sites. CONCLUSION: The consensus from current literature supports the use of external collimators in PBS under certain conditions, namely low-energy treatments or where the nominal spot size is large. While many recent studies paint a supportive picture, it is also important to understand the limitations of collimation in PBS that are specific to each collimator type. The emergence and paradigm of energy-specific collimation holds many promises for PBS proton therapy.

5.
Med Phys ; 48(6): 3172-3185, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33740253

ABSTRACT

PURPOSE: The aim of this work was to develop and experimentally validate a Dynamic Collimation Monte Carlo (DCMC) simulation package specifically designed for the simulation of collimators in pencil beam scanning proton therapy (PBS-PT). The DCMC package was developed using the TOPAS Monte Carlo platform and consists of a generalized PBS source model and collimator component extensions. METHODS: A divergent point-source model of the IBA dedicated nozzle (DN) at the Miami Cancer Institute (MCI) was created and validated against on-axis commissioning measurements taken at MCI. The beamline optics were mathematically incorporated into the source to model beamlet deflections in the X and Y directions at the respective magnet planes. Off-axis measurements taken at multiple planes in air were used to validate both the off-axis spot size and divergence of the source model. The DCS trimmers were modeled and incorporated as TOPAS geometry extensions that linearly translate and rotate about the bending magnets. To validate the collimator model, a series of integral depth dose (IDD) and lateral profile measurements were acquired at MCI and used to benchmark the DCMC performance for modeling both pristine and range shifted beamlets. The water equivalent thickness (WET) of the range shifter was determined by quantifying the shift in the depth of the 80% dose point distal to the Bragg peak between the range shifted and pristine uncollimated beams. RESULTS: A source model of the IBA DN system was successfully commissioned against on- and off-axis IDD and lateral profile measurements performed at MCI. The divergence of the source model was matched through an optimization of the source-to-axis distance and comparison against in-air spot profiles. The DCS model was then benchmarked against collimated IDD and in-air and in-phantom lateral profile measurements. Gamma analysis was used to evaluate the agreement between measured and simulated lateral profiles and IDDs with 1%/1 mm criteria and a 1% dose threshold. For the pristine collimated beams, the average 1%/1 mm gamma pass rates across all collimator configurations investigated were 99.8% for IDDs and 97.6% and 95.2% for in-air and in-phantom lateral profiles. All range shifted collimated IDDs passed at 100% while in-air and in-phantom lateral profiles had average pass rates of 99.1% and 99.8%, respectively. The measured and simulated WET of the polyethylene range shifter was determined to be 40.9 and 41.0 mm, respectively. CONCLUSIONS: We have developed a TOPAS-based Monte Carlo package for modeling collimators in PBS-PT. This package was then commissioned to model the IBA DN system and DCS located at MCI using both uncollimated and collimated measurements. Validation results demonstrate that the DCMC package can be used to accurately model other aspects of a DCS implementation via simulation.


Subject(s)
Proton Therapy , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
6.
Med Phys ; 47(7): 2725-2734, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32170750

ABSTRACT

PURPOSE: When designing a collimation system for pencil beam spot scanning proton therapy, a decision must be made whether or not to rotate, or focus, the collimator to match beamlet deflection as a function of off-axis distance. If the collimator is not focused, the beamlet shape and fluence will vary as a function of off-axis distance due to partial transmission through the collimator. In this work, we quantify the magnitude of these effects and propose a focused dynamic collimation system (DCS) for use in proton therapy spot scanning. METHODS: This study was done in silico using a model of the Miami Cancer Institute's (MCI) IBA Proteus Plus system created in Geant4-based TOPAS. The DCS utilizes rectangular nickel trimmers mounted on rotating sliders that move in synchrony with the pencil beam to provide focused collimation at the edge of the target. Using a simplified setup of the DCS, simulations were performed at various off-axis locations corresponding to beam deflection angles ranging from 0° to 2.5°. At each off-axis location, focused (trimmer rotated) and unfocused (trimmer not rotated) simulations were performed. In all simulations, a 4 cm water equivalent thickness range shifter was placed upstream of the collimator, and a voxelized water phantom that scored dose was placed downstream, each with 4 cm airgaps. RESULTS: Increasing the beam deflection angle for an unfocused trimmer caused the collimated edge of the beamlet profile to shift 0.08-0.61 mm from the baseline 0° simulation. There was also an increase in low-dose regions on the collimated edge ranging from 14.6% to 192.4%. Lastly, the maximum dose, D max , was 0-5% higher for the unfocused simulations. With a focused trimmer design, the profile shift and dose increases were all eliminated. CONCLUSIONS: We have shown that focusing a collimator in spot scanning proton therapy reduces dose at the collimated edge compared to conventional, unfocused collimation devices and presented a simple, mechanical design for achieving focusing for a range of source-to-collimator distances.


Subject(s)
Proton Therapy , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...