Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Test Anal ; 9(5): 699-712, 2017 May.
Article in English | MEDLINE | ID: mdl-27497113

ABSTRACT

Urine collection containers used in the doping control collection procedure do not provide a protective environment for urine, against degradation by microorganisms and proteolytic enzymes. An in-house chemical stabilization mixture was developed to tackle urine degradation problems encountered in human sport samples, in cases of microbial contamination or proteolytic activity. The mixture consists of antimicrobial substances and protease inhibitors for the simultaneous inactivation of a wide range of proteolytic enzymes. It has already been tested in lab-scale, as part of World Anti-Doping Agency's (WADA) funded research project, in terms of efficiency against microbial and proteolytic activity. The present work, funded also by WADA, is a follow-up study on the improvement of chemical stabilization mixture composition, application mode and limitation of interferences, using pilot urine collection containers, spray-coated in their internal surface with the chemical stabilization mixture. Urine in plastic stabilized collection containers have been gone through various incubation cycles to test for stabilization efficiency and analytical matrix interferences by three WADA accredited Laboratories (Athens, Ghent, and Rome). The spray-coated chemical stabilization mixture was tested against microorganism elimination and steroid glucuronide degradation, as well as enzymatic breakdown of proteins, such as intact hCG, recombinant erythropoietin and small peptides (GHRPs, ipamorelin), induced by proteolytic enzymes. Potential analytical interferences, observed in the presence of spray-coated chemical stabilization mixture, were recorded using routine screening procedures. The results of the current study support the application of the spray-coated plastic urine container, in the doping control collection procedure. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Specimen Handling/methods , Substance Abuse Detection/methods , Urinalysis/methods , Urine/chemistry , Chorionic Gonadotropin/urine , DNA/urine , Doping in Sports , Erythropoietin/urine , Follow-Up Studies , Humans , Peptides/urine , Pilot Projects , Proteolysis , Recombinant Proteins/urine , Specimen Handling/instrumentation , Steroids/urine , Substance Abuse Detection/instrumentation , Urinalysis/instrumentation , Urine/microbiology
2.
Appl Environ Microbiol ; 80(4): 1256-67, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24317082

ABSTRACT

Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼10(8) ina genes g(-1) fresh weight of foliage on cereals and 10(5) to 10(7) g(-1) on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at -10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at -10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at -10°C, suggesting a significant contribution to this sample.


Subject(s)
Bacteria/classification , Bacteria/genetics , Bacterial Outer Membrane Proteins/genetics , Plants/microbiology , Bacterial Load , Bacterial Proteins/genetics , Molecular Sequence Data , Plant Leaves/microbiology , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Temperature
3.
PLoS One ; 8(4): e61808, 2013.
Article in English | MEDLINE | ID: mdl-23596526

ABSTRACT

Pseudomonas fluorescens strain X, a bacterial isolate from the rhizosphere of bean seedlings, has the ability to suppress damping-off caused by the oomycete Pythium ultimum. To determine the genes controlling the biocontrol activity of strain X, transposon mutagenesis, sequencing and complementation was performed. Results indicate that, biocontrol ability of this isolate is attributed to gcd gene encoding glucose dehydrogenase, genes encoding its co-enzyme pyrroloquinoline quinone (PQQ), and two genes (sup5 and sup6) which seem to be organized in a putative operon. This operon (named supX) consists of five genes, one of which encodes a non-ribosomal peptide synthase. A unique binding site for a GntR-type transcriptional factor is localized upstream of the supX putative operon. Synteny comparison of the genes in supX revealed that they are common in the genus Pseudomonas, but with a low degree of similarity. supX shows high similarity only to the mangotoxin operon of Ps. syringae pv. syringae UMAF0158. Quantitative real-time PCR analysis indicated that transcription of supX is strongly reduced in the gcd and PQQ-minus mutants of Ps. fluorescens strain X. On the contrary, transcription of supX in the wild type is enhanced by glucose and transcription levels that appear to be higher during the stationary phase. Gcd, which uses PQQ as a cofactor, catalyses the oxidation of glucose to gluconic acid, which controls the activity of the GntR family of transcriptional factors. The genes in the supX putative operon have not been implicated before in the biocontrol of plant pathogens by pseudomonads. They are involved in the biosynthesis of an antimicrobial compound by Ps. fluorescens strain X and their transcription is controlled by glucose, possibly through the activity of a GntR-type transcriptional factor binding upstream of this putative operon.


Subject(s)
Gene Expression Regulation, Bacterial , Genes, Bacterial , Glucose/metabolism , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Chromosome Mapping , Cloning, Molecular , Gene Order , Genetic Complementation Test , Genetic Loci , Molecular Sequence Data , Mutation , PQQ Cofactor/genetics , PQQ Cofactor/metabolism , Sequence Analysis, DNA
4.
J Anal Methods Chem ; 2013: 854763, 2013.
Article in English | MEDLINE | ID: mdl-24455426

ABSTRACT

Pectin is a natural polysaccharide used in food and pharma industries. Pectin degree of methylation is an important parameter having significant influence on pectin applications. A rapid, fully automated, kinetic flow method for determination of pectin methyl esters has been developed. The method is based on a lab-made analyzer using the reverse flow-injection/stopped flow principle. Methanol is released from pectin by pectin methylesterase in the first mixing coil. Enzyme working solution is injected further downstream and it is mixed with pectin/pectin methylesterase stream in the second mixing coil. Methanol is oxidized by alcohol oxidase releasing formaldehyde and hydrogen peroxide. This reaction is coupled to horse radish peroxidase catalyzed reaction, which gives the colored product 4-N-(p-benzoquinoneimine)-antipyrine. Reaction rate is proportional to methanol concentration and it is followed using Ocean Optics USB 2000+ spectrophotometer. The analyzer is fully regulated by a lab written LabVIEW program. The detection limit was 1.47 mM with an analysis rate of 7 samples h(-1). A paired t-test with results from manual method showed that the automated method results are equivalent to the manual method at the 95% confidence interval. The developed method is rapid and sustainable and it is the first application of flow analysis in pectin analysis.

5.
FEMS Microbiol Lett ; 327(1): 66-77, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22112296

ABSTRACT

NopT1 and NopT2, putative type III effectors from the plant symbiotic bacterium Bradyrhizobium japonicum, are predicted to belong to a family of YopT/AvrPphB effectors, which are cysteine proteases. In the present study, we showed that both NopT1 and NopT2 indeed possess cysteine protease activity. When overexpressed in Escherichia coli, both NopT1 and NopT2 undergo autoproteolytic processing which is largely abolished in the presence of E-64, a papain family-specific inhibitor. Mutations of NopT1 disrupting either the catalytic triad or the putative autoproteolytic site reduce or markedly abolish the protease activity. Autocleavage likely occurs between residues K48 and M49, though another potential cleavage site is also possible. NopT1 also elicitis HR-like cell death when transiently expressed in tobacco plants and its cysteine protease activity is essential for this ability. In contrast, no macroscopic symptoms were observed for NopT2. Furthermore, mutational analysis provided evidence that NopT1 may undergo acylation inside plant cells and that this would be required for its capacity to elicit HR-like cell death in tobacco.


Subject(s)
Bacterial Proteins/metabolism , Bradyrhizobium/enzymology , Cysteine Endopeptidases/metabolism , Nicotiana/microbiology , Amino Acid Motifs , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bradyrhizobium/chemistry , Bradyrhizobium/genetics , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Molecular Sequence Data , Nicotiana/physiology
6.
Anal Bioanal Chem ; 401(2): 553-61, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21499681

ABSTRACT

Transportation of doping control urine samples from the collection sites to the World Anti-doping Agency (WADA) Accredited Laboratories is conducted under ambient temperatures. When sample delivery is not immediate, microbial contamination of urine, especially in summer, is a common phenomenon that may affect sample integrity and may result in misinterpretation of analytical data. Furthermore, the possibility of intentional contamination of sports samples during collection with proteolytic enzymes, masking the abuse of prohibited proteins such as erythropoietin (EPO) and peptide hormones, is a practice that has already been reported. Consequently, stabilization of urine samples with a suitable method in a way that protects samples' integrity is important. Currently, no stabilization method is applied in the sample collection equipment system in order to prevent degradation of urine compounds. The present work is an overview of a study, funded by WADA, on degradation and stabilization aspects of sports urine samples against the above threats of degradation. Extensive method development resulted in the creation of a mixture of chemical agents for the stabilization of urine. Evaluation of results demonstrated that the stabilization mixture could stabilize endogenous steroids, recombinant EPO, and human chorionic gonadotropin in almost the entire range of the experimental conditions tested.


Subject(s)
Analytic Sample Preparation Methods/methods , Chorionic Gonadotropin/urine , Doping in Sports , Erythropoietin/urine , Steroids/urine , Substance Abuse Detection/methods , Humans , Reference Standards , Sensitivity and Specificity
7.
Sensors (Basel) ; 10(8): 7089-98, 2010.
Article in English | MEDLINE | ID: mdl-22163592

ABSTRACT

This paper describes the development of an automated Flow Injection analyzer for water toxicity assessment. The analyzer is validated by assessing the toxicity of heavy metal (Pb(2+), Hg(2+) and Cu(2+)) solutions. One hundred µL of a Vibrio fischeri suspension are injected in a carrier solution containing different heavy metal concentrations. Biosensor cells are mixed with the toxic carrier solution in the mixing coil on the way to the detector. Response registered is % inhibition of biosensor bioluminescence due to heavy metal toxicity in comparison to that resulting by injecting the Vibrio fischeri suspension in deionised water. Carrier solutions of mercury showed higher toxicity than the other heavy metals, whereas all metals show concentration related levels of toxicity. The biosensor's response to carrier solutions of different pHs was tested. Vibrio fischeri's bioluminescence is promoted in the pH 5-10 range. Experiments indicate that the whole cell biosensor, as applied in the automated fluidic system, responds to various toxic solutions.


Subject(s)
Biosensing Techniques/methods , Flow Injection Analysis/instrumentation , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/isolation & purification , Biosensing Techniques/instrumentation , Equipment Design/methods , Flow Injection Analysis/methods , Hydrogen-Ion Concentration , Luminescent Measurements/methods , Metals, Heavy/analysis , Reproducibility of Results , Software , Toxicity Tests/methods , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...