Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Genomics Proteomics ; 19(4): 390-414, 2022.
Article in English | MEDLINE | ID: mdl-35732328

ABSTRACT

Brain tumours are the leading cause of paediatric cancer-associated death worldwide. High-grade glioma (HGG) represents a main cause of paediatric brain tumours and is associated with poor prognosis despite surgical and chemoradiotherapeutic advances. The molecular genetics of paediatric HGG (pHGG) are distinct from those in adults, and therefore, adult clinical trial data cannot be extrapolated to children. Compared to adult HGG, pHGG is characterised by more frequent mutations in PDGFRA, TP53 and recurrent K27M and G34R/V mutations on histone H3. Ongoing trials are investigating novel targeted therapies in pHGG. Promising results have been achieved with BRAF/MEK and PI3K/mTOR inhibitors. Combination of PI3K/mTOR, EGFR, CDK4/6, and HDAC inhibitors are potentially viable options. Inhibitors targeting the UPS proteosome, ADAM10/17, IDO, and XPO1 are more novel and are being investigated in early-phase trials. Despite preclinical and clinical trials holding promise for the discovery of effective pHGG treatments, several issues persist. Inadequate blood-brain barrier penetration, unfavourable pharmacokinetics, dose-limiting toxicities, long-term adverse effects in the developing child, and short-lived duration of response due to relapse and resistance highlight the need for further improvement. Future pHGG management will largely depend on selecting combination therapies which work synergistically based on a sound knowledge of the underlying molecular target pathways. A systematic investigation of multimodal therapy with chemoradiotherapy, surgery, target agents and immunotherapy is paramount. This review provides a comprehensive overview of pHGG focusing on molecular genetics and novel targeted therapies. The diagnostics, genetic discrepancies with adults and their clinical implications, as well as conventional treatment approaches are discussed.


Subject(s)
Brain Neoplasms , Glioma , Adult , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Child , Glioma/drug therapy , Glioma/genetics , Histones , Humans , Molecular Biology , Phosphatidylinositol 3-Kinases/metabolism
2.
Anticancer Res ; 41(7): 3247-3252, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34230118

ABSTRACT

Cancer immunotherapy is an evolving field of research. Cytokines have been conceptualized as an anticancer therapy for longer than most other cancer immunotherapy modalities. Yet, to date, only two cytokines are FDA-approved: IFN-α and IL-2. Despite the initial breakthrough, both agents have been superseded by other, more efficacious agents such as immune checkpoint inhibitors. Several issues persist with cytokine-based cancer therapies; these are broadly categorised into a) high toxicity and b) low efficacy. Despite the only moderate benefits with early cytokine-based cancer therapies, advances in molecular engineering, genomics, and molecular analysis hold promise to optimise and reinstate cytokine-based therapies in future clinical practice. This review considers five important concepts for the successful clinical application of cytokine-based cancer therapies including: (i) improving pharmacokinetics and pharmacodynamics, (ii) improving local administration strategies, (iii) understanding context-dependent interactions in the tumour-microenvironment, (iv) elucidating the role of genetic polymorphisms, and (v) optimising combination therapies. IL-10 has been the focus of attention in recent years and is discussed herein as an example.


Subject(s)
Cytokines/pharmacology , Cytokines/therapeutic use , Interleukin-10/pharmacology , Interleukin-10/therapeutic use , Neoplasms/immunology , Neoplasms/therapy , Animals , Humans , Immunotherapy/methods , Polymorphism, Genetic/drug effects , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...