Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Extracell Vesicle ; 1: 100002, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36523538

ABSTRACT

Respiratory diseases are among the leading causes of morbidity and mortality worldwide, coupled with the ongoing coronavirus disease 2019 (COVID-19) pandemic. mRNA lipid nanoparticle (LNP) vaccines have been developed, but their intramuscular delivery limits pulmonary bioavailability. Inhalation of nanoparticle therapeutics offers localized drug delivery that minimizes off targeted adverse effects and has greater patient compliance. However, LNP platforms require extensive reformulation for inhaled delivery. Lung-derived extracellular vesicles (Lung-Exo) offer a biological nanoparticle alternative that is naturally optimized for mRNA translation and delivery to pulmonary cells. We compared the biodistribution of Lung-Exo against commercially standard biological extracellular vesicles (HEK-Exo) and LNPs (Lipo), where Lung-Exo exhibited superior mRNA and protein cargo distribution to and retention in the bronchioles and parenchyma following nebulization administration. This suggests that inhaled Lung-Exo can deliver mRNA and protein drugs with enhanced pulmonary bioavailability and therapeutic efficacy.

2.
Matter ; 5(9): 2960-2974, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35847197

ABSTRACT

Respiratory diseases are a global burden, with millions of deaths attributed to pulmonary illnesses and dysfunctions. Therapeutics have been developed, but they present major limitations regarding pulmonary bioavailability and product stability. To circumvent such limitations, we developed room-temperature-stable inhalable lung-derived extracellular vesicles or exosomes (Lung-Exos) as mRNA and protein drug carriers. Compared with standard synthetic nanoparticle liposomes (Lipos), Lung-Exos exhibited superior distribution to the bronchioles and parenchyma and are deliverable to the lungs of rodents and nonhuman primates (NHPs) by dry powder inhalation. In a vaccine application, severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein encoding mRNA-loaded Lung-Exos (S-Exos) elicited greater immunoglobulin G (IgG) and secretory IgA (SIgA) responses than its loaded liposome (S-Lipo) counterpart. Importantly, S-Exos remained functional at room-temperature storage for one month. Our results suggest that extracellular vesicles can serve as an inhaled mRNA drug-delivery system that is superior to synthetic liposomes.

3.
View (Beijing) ; 2(3): 20200186, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34766162

ABSTRACT

Respiratory viral diseases are a leading cause of mortality in humans. They have proven to drive pandemic risk due to their complex transmission factors and viral evolution. However, the slow production of effective antiviral drugs and vaccines allows for outbreaks of these diseases, emphasizing a critical need for refined antiviral therapeutics. The delivery of exosomes, a naturally secreted extracellular vesicle, yields therapeutic effects for a variety of diseases, including viral infection. Exosomes and viruses utilize similar endosomal sorting pathways and mechanisms, providing exosomes with the potential to serve as a therapeutic that can target, bind, and suppress cellular uptake of various viruses including the novel severe acute respiratory syndrome coronavirus 2. Here, we review the relationship between exosomes and respiratory viruses, describe potential exosome therapeutics for viral infections, and summarize progress toward clinical translation for lung-derived exosome therapeutics.

4.
J Extracell Vesicles ; 9(1): 1785161, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32944172

ABSTRACT

Exosomes are 30 to 100 nm extracellular vesicles that are secreted by many cell types. Initially viewed as cellular garbage with no biological functions, exosomes are now recognized for their therapeutic potential and used in regenerative medicine. Cell-derived exosomes are released into almost all biological fluids, making them abundant and accessible vesicles for a variety of diseases. These naturally occurring nanoparticles have a wide range of applications including drug delivery and regenerative medicine. Exosomes sourced from a specific tissue have been proven to provide greater therapeutic effects to their native tissue, expanding exosome sources beyond traditional cell lines such as mesenchymal stem cells. However, standardizing production and passing regulations remain obstacles, due to variations in methods and quantification techniques across studies. Additionally, obtaining pure exosomes at sufficient quantities remains difficult due to the heterogeneity of exosomes. In this review, we will underline the uses of exosomes as a therapy and their roles in lung regenerative medicine, as well as current challenges in exosome therapies.

5.
Nat Commun ; 11(1): 1064, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111836

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal and incurable form of interstitial lung disease in which persistent injury results in scar tissue formation. As fibrosis thickens, the lung tissue loses the ability to facilitate gas exchange and provide cells with needed oxygen. Currently, IPF has few treatment options and no effective therapies, aside from lung transplant. Here we present a series of studies utilizing lung spheroid cell-secretome (LSC-Sec) and exosomes (LSC-Exo) by inhalation to treat different models of lung injury and fibrosis. Analysis reveals that LSC-Sec and LSC-Exo treatments could attenuate and resolve bleomycin- and silica-induced fibrosis by reestablishing normal alveolar structure and decreasing both collagen accumulation and myofibroblast proliferation. Additionally, LSC-Sec and LSC-Exo exhibit superior therapeutic benefits than their counterparts derived from mesenchymal stem cells in some measures. We showed that an inhalation treatment of secretome and exosome exhibited therapeutic potential for lung regeneration in two experimental models of pulmonary fibrosis.


Subject(s)
Exosomes/transplantation , Idiopathic Pulmonary Fibrosis/therapy , Lung Injury/therapy , Lung/cytology , Spheroids, Cellular/metabolism , Administration, Inhalation , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Animals , Apoptosis/drug effects , Bleomycin/toxicity , Cell Proliferation , Disease Models, Animal , Exosomes/metabolism , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Mesenchymal Stem Cells/metabolism , Mice , Myofibroblasts/cytology , Proteomics , Silicon Dioxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...