Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 24(2): 531-565, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36702743

ABSTRACT

Peptide-based polymers are evolving as promising materials for various biomedical applications. Among peptide-based polymers, polytyrosine (PTyr)-based and l-tyrosine (Tyr)-derived polymers are unique, due to their excellent biocompatibility, degradability, and functional as well as engineering properties. To date, different polymerization techniques (ring-opening polymerization, enzymatic polymerization, condensation polymerization, solution-interfacial polymerization, and electropolymerization) have been used to synthesize various PTyr-based and Tyr-derived polymers. Even though the synthesis starts from Tyr, different synthesis routes yield different polymers (polypeptides, polyarylates, polyurethanes, polycarbonates, polyiminocarbonate, and polyphosphates) with unique functional characteristics, and these polymers have been successfully used for various biomedical applications in the past decades. This Review comprehensively describes the synthesis approaches, classification, and properties of various PTyr-based and Tyr-derived polymers employed in drug delivery, tissue engineering, and biosensing applications.


Subject(s)
Polymers , Tyrosine , Polymers/chemistry , Tyrosine/chemistry , Biocompatible Materials/chemistry , Tissue Engineering/methods , Peptides , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...