Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 42: 108261, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35599816

ABSTRACT

Piper nigrum and Piper longum are the most popular and economically essential spice crops globally valued for their aromatic alkaloids, especially Piperine. However, Piperine synthesis pathway mechanisms are not yet well known. This work was aimed to generate the full-length comparative berry transcriptome analysis dataset of P. nigrum and P. longum by Illumina and Nanopore sequencing platforms. While short-read sequencing technology is widely using to capture transcriptome profiles, there are still some limitations due to the read length. We used Oxford Nanopore technology for long reads and the Illumina sequencing platform for short reads to generate a hybrid transcriptome assembly from half matured and fully matured berries of P. nigrum and P. longum. From P. nigrum and P. longum 37.3 million and 38.1 million raw reads were generated respectively. A total of 308369 contigs from P. nigrum and 267715 contigs from P. longum were obtained and successfully annotated. The transcriptome data revealed gene families involved in piperine and other secondary metabolite biosynthetic pathways. The raw data were uploaded to NCBI database. This dataset shed light on the further exploration of the piperine biosynthetic pathway, its transcriptomic changes, and evolution. Data generated has been submitted to SRA of NCBI with Bio samples accession: (SAMN13981803, SAMN22826456).

2.
Physiol Mol Biol Plants ; 27(5): 1153-1161, 2021 May.
Article in English | MEDLINE | ID: mdl-34092955

ABSTRACT

Though the volatile profiles of black pepper have been reported already, the information on terpene synthase family genes is not known. In this study, using a combinatorial approach, the berry hybrid transcriptome assembly of llumina and nanopore sequencing, the entire terpene synthase family responsible for the biosynthesis of the flavor-imparting volatiles in black pepper berries was profiled. The profile shows 98 terpene synthases from various terpene synthesis pathways. Three important monoterpene synthases were also validated by targeted amplification, sequencing and homology modeling. This study provides the first of its kind information on the terpene synthase family profile in Piper nigrum, which is potentially a major step for further characterization of the functional terpene synthase genes in black pepper. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00986-4.

3.
Physiol Mol Biol Plants ; 24(3): 379-387, 2018 May.
Article in English | MEDLINE | ID: mdl-29692546

ABSTRACT

Plant antimicrobial peptides are the interesting source of studies in defense response as they are essential components of innate immunity which exert rapid defense response. In spite of abundant reports on the isolation of antimicrobial peptides (AMPs) from many sources, the profile of AMPs expressed/identified from single crop species under certain stress/physiological condition is still unknown. This work describes the AMP signature profile of black pepper and their expression upon Phytophthora infection using label-free quantitative proteomics strategy. The differential expression of 24 AMPs suggests that a combinatorial strategy is working in the defense network. The 24 AMP signatures belonged to the cationic, anionic, cysteine-rich and cysteine-free group. As the first report on the possible involvement of AMP signature in Phytophthora infection, our results offer a platform for further study on regulation, evolutionary importance and exploitation of theses AMPs as next generation molecules against pathogens.

4.
Appl Biochem Biotechnol ; 184(3): 987-1008, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28933036

ABSTRACT

The oomycetes, Phytophthora capsici, cause foot rot disease in black pepper. Piper colubrinum Link, a distant relative of cultivated black pepper, is highly resistant to this destructive pathogen. Identification of resistance (R) genes in P. colubrinum and the study of its expression profile during interaction with the pathogen can help in understanding the resistance mechanism involved. In the present study, 1289 R gene-related transcripts were mined from P. colubrinum transcriptome, clustered, and classified according to the conserved motifs and domains. Transcripts belonging to four major R gene classes were identified in P. colubrinum, but TIR-NBS-LRR-type R genes were absent. The relative expression of 12 selected R genes was studied using two virulent isolates of P. capsici, and these were found to be upregulated in the initial hours of plant pathogen interaction. The R genes studied were expressed even in aseptically maintained tissue-cultured plants and uninoculated greenhouse-grown plants at basal level suggesting that the plants are geared up with the R gene all the time and are under continuous surveillance for the pathogen and basal level of R gene expression do not require a pathogen trigger. ACT, ATUB, and EIF3E were identified as the most stable reference genes that can be used for real-time PCR study. The present study identified promising R genes in P. colubrinum which can be used in developing Phytophthora-resistant black pepper.


Subject(s)
Disease Resistance/physiology , Gene Expression Regulation, Plant , Phytophthora , Piper , Plant Diseases/microbiology , Plant Leaves , Transcriptome , Piper/genetics , Piper/metabolism , Piper/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...