Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 303(Pt 1): 135047, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35609663

ABSTRACT

Globally, exposure to ambient fine particulate matter (PM2.5) pollution claims ∼9 million lives, yearly, and a quarter of this deaths occurs in India. Regulation of PM2.5 pollution in India is based on compliance with its National Ambient Air Quality Standard (NAAQS) of 40 µg/m3, which is eight times the revised global air quality guideline (AQG) of 5 µg/m3. But, whether the NAAQS provides adequate protection against the hazardous components in PM2.5 is still not clear. Here, we examined the risk to health associated with exposure to PM2.5-bound polychlorinated biphenyls (PCB), heavy metals and polycyclic aromatic hydrocarbons (PAHs) in an Indian district averaging below the NAAQS. The annual average concentrations of PM2.5 mass, Σ28PCB and Σ13PAHs were 34 ± 17 µg/m3, 21 ± 12 ng/m3 and 458 ± 246 ng/m3, respectively. Concentrations of As, Cr, Mn and Ni in PM2.5 surpassed the screening levels for residential air. Substantial level of risks to health were associated with exposure to dioxin-like PCBs (Σ12dlPCB), PAHs, As, Cr and Ni. The hazard index or lifetime cancer risk were 240, or 9 cases per 1000 population, respectively. The estimated risks to health through exposure to hazardous components, except Ni, were greatest in rural areas, having a lower average PM2.5 concentration, than urban or peri-urban areas, suggesting higher toxicity potential of rural combustion sources. The large disparity between the estimated risk values and the acceptable risk level suggests that it would take a more stringent standard, such as the global AQG, to protect vulnerable populations in India from hazardous components in PM2.5.


Subject(s)
Air Pollutants , Air Pollution , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/prevention & control , Environmental Monitoring , Humans , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Seasons
2.
Chemosphere ; 204: 277-289, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29665530

ABSTRACT

Exposure to PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) can elicit several types of cancer and non-cancer effects. Previous studies reported substantial burdens of PAH-induced lung cancer, but the burdens of other cancer types and non-cancer effects remain unknown. Thus, we estimate the cancer and non-cancer burden of disease, in disability-adjusted life years (DALYs), attributable to ambient PM2.5-bound PAHs exposure in Nagpur district, India, using risk-based approach. We measured thirteen PAHs in airborne PM2.5 sampled from nine sites covering urban, peri-urban and rural areas, from February 2013 to June 2014. We converted PAHs concentrations to benzo[a]pyrene equivalence (B[a]Peq) for cancer and non-cancer effects using relative potency factors, and relative toxicity factors derived from quantitative structure-activity relationships, respectively. We calculated time-weighted exposure to B[a]Peq, averaged over 30 years, and adjusted for early-life susceptibility to cancer. We estimated the DALYs/year using B[a]Peq exposure levels, published toxicity data, and severity of the diseases from Global Burden of Disease 2016 database. The annual average concentration of total PM2.5-bound PAHs was 458 ±â€¯246 ng/m3 and resulted in 49,500 DALYs/year (0.011 DALYs/person/year). The PAH-related DALYs followed this order: developmental (mostly cardiovascular) impairments (55.1%) > cancer (26.5%) or lung cancer (23.1%) > immunological impairments (18.0%) > reproductive abnormalities (0.4%).


Subject(s)
Air Pollutants/analysis , Developmental Disabilities/epidemiology , Infertility/epidemiology , Neoplasms/epidemiology , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Adolescent , Adult , Air Pollutants/adverse effects , Child , Child, Preschool , Developmental Disabilities/chemically induced , Female , Humans , India/epidemiology , Infant , Infant, Newborn , Infertility/chemically induced , Male , Neoplasms/chemically induced , Particulate Matter/adverse effects , Polycyclic Aromatic Hydrocarbons/adverse effects , Young Adult
3.
Environ Sci Pollut Res Int ; 24(4): 3363-3374, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27866359

ABSTRACT

The estimates of airborne fine particle (PM2.5) concentrations are possible through rigorous empirical correlations based on the monitored PM10 data. However, such correlations change depending on the nature of sources in diverse ambient environments and, therefore, have to be environment specific. Studies presenting such correlations are limited but needed, especially for those areas, where PM2.5 is not routinely monitored. Moreover, there are a number of studies focusing on urban environments but very limited for coal mines and coastal areas. The aim of this study is to comprehensively analyze the concentrations of both PM10 and PM2.5 and develop empirical correlations between them. Data from 26 different sites spread over three distinct environments, which are a relatively clean coastal area, two coal mining areas, and a highly urbanized area in Delhi were used for the study. Distributions of PM in the 0.43-10-µm size range were measured using eight-stage cascade impactors. Regression analysis was used to estimate the percentage of PM2.5 in PM10 across distinct environments for source identification. Relatively low percentage of PM2.5 concentrations (21, 28, and 32%) in PM10 were found in clean coastal and two mining areas, respectively. Percentage of PM2.5 concentrations in PM10 in the highly urbanized area of Delhi was 51%, indicating a presence of a much higher percentage of fine particles due to vehicular combustion in Delhi. The findings of this work are important in estimating concentrations of much harmful fine particles from coarse particles across distinct environments. The results are also useful in source identification of particulates as differences in the percentage of PM2.5 concentrations in PM10 can be attributed to characteristics of sources in the diverse ambient environments.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , India , Mining , Particle Size , Regression Analysis
4.
Environ Monit Assess ; 185(2): 1117-28, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22552492

ABSTRACT

This study compares the ambient air particulate matter (PM10) data of 15 different coal mine environments. For most of these mine environments, the monitoring was carried out by different researchers using respirable dust sampler (RDS) that separates PM10 by centrifugal inertial separation. At two sites--Padmapur and Ghugus (Chandrapur, Maharashtra, India)--mass inertial impaction-based sampler was used for PM10 monitoring. It is observed that the spatiotemporal average value of ambient air PM10 monitored using mass inertial impactor reports relatively higher values (240-372 µg/m(3)) compared to those monitored using RDS (<227 µg/m(3)). In order to realize the severity of mine area pollution, it is compared with PM10 values found in an urban area (Delhi, India). It is found that PM10 values in Delhi (using mass inertial impactor) are much higher (300-400 µg/m(3)) than those reported for the mine environment. The data seems to indicate that the mine environment is relatively cleaner than urban air and therefore raises doubt about the appropriateness of using either mass impactor or RDS for PM10 sampling.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Coal Mining , Environmental Monitoring , Particulate Matter/analysis , India , Particle Size
5.
Environ Monit Assess ; 169(1-4): 677-85, 2010 Oct.
Article in English | MEDLINE | ID: mdl-19888663

ABSTRACT

Integrated pipe manufacturing industry is operation intensive and has significant air pollution potential especially when it is equipped with a captive power production facility. Emissions of SO(2), NO(x), and particulate matter (PM) were estimated from the stationary sources in a state-of-the-art pipe manufacturing plant in India. Major air polluting units like blast furnace, ductile iron spun pipe facility, and captive power production facility were selected for stack gas monitoring. Subsequently, ambient air quality modeling was undertaken to predict ground-level concentrations of the selected air pollutants using Industrial Source Complex (ISC 3) model. Emissions of SO(2), NO(x), and particulate matter from the stationary sources in selected facilities ranged from 0.02 to 16.5, 0.03 to 93.3, and 0.09 to 48.3 kg h(-1), respectively. Concentration of SO(2) and NO(x) in stack gas of 1,180-kVA (1 KW = 1.25 kVA) diesel generator exceeded the upper safe limits prescribed by the State Pollution Control Board, while concentrations of the same from all other units were within the prescribed limits. Particulate emission was highest from the barrel grinding operation, where grinding of the manufactured pipes is undertaken for giving the final shape. Particulate emission was also high from dedusting operation where coal dust is handled. Air quality modeling indicated that maximum possible ground-level concentration of PM, SO(2), and NO(x) were to the tune of 13, 3, and 18 microg/m(3), respectively, which are within the prescribed limits for ambient air given by the Central Pollution Control Board.


Subject(s)
Air Pollutants/analysis , Industrial Waste/analysis , Nitrogen Oxides/analysis , Particulate Matter/analysis , Sulfur Dioxide/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring
6.
Environ Monit Assess ; 151(1-4): 337-43, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18398689

ABSTRACT

A new model is proposed for estimating horizontal dilution potential of an area using wind data. The mean wind speed and wind direction variation are used as a measure of linear and angular spread of pollutant in the atmosphere. The methodology is applied to monitored hourly wind data for each month of 1 year for wind data collected at Vadodara, Gujarat and monthly dilution potential is estimated. It is found that there is a gradual variation of horizontal dilution potential over a year with limited dilution during post monsoon period i.e., October and November and a high dilution in pre monsoon period i.e., May and June. This information can be used to design air quality sampling network and duration of sampling for source apportionment study. Air pollutant sampling during high dilution period can be carried out for identifying urban and rural dust and wind blown dust from mining activity. Air pollutant sampling during low dilution period can be carried out for capturing large amount of particulate matter from anthropogenic sources like elevated stack of furnace.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Wind , Humans , India , Seasons
7.
Environ Monit Assess ; 145(1-3): 113-8, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18046617

ABSTRACT

In this study a new methodology is suggested to approximate the impact area downwind of an air pollution source, where air quality monitoring can be carried out to capture the maximum pollutant concentration. Hourly wind speed for a given month is grouped in to different wind speed ranges and the distance of pollutant travel is approximated from the average wind speed of that wind speed range. Since change in wind direction causes the impact distance to rotate, its rotation is approximated by the SD of wind direction change. Using this approach, area or region down wind of a source is determined and plotted. The pattern of monthly change of wind is better represented by the new type of diagram as compared to the wind rose diagram.


Subject(s)
Air , Environmental Monitoring/methods
8.
J Environ Sci Eng ; 49(2): 87-92, 2007 Apr.
Article in English | MEDLINE | ID: mdl-18476400

ABSTRACT

In this study, a new methodology is suggested for estimating horizontal dilution potential of an area using wind data. The mean wind speed and wind direction variation are used as a measure of linear and angular spread of pollutants in the atmosphere. A formula is developed for estimating the potential of horizontal spread of pollutants in an area wherein only the wind speed and direction are used. The methodology is further applied to monitor wind data of one year. It is found that there is a very smooth variation of horizontal dilution potential over a year with limited dilution during post monsoon period and a high dilution in pre monsoon period.


Subject(s)
Environmental Monitoring/methods , Air Movements , Air Pollutants , Air Pollution , Atmosphere , Equipment Design , Meteorological Concepts , Models, Statistical , Particle Size , Time Factors , Weather , Wind
10.
Environ Technol ; 24(11): 1425-30, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14733395

ABSTRACT

Almost all coal based thermal power plants (CTPP) in India use electrostatic precipitator (ESP) for reduction of particulate matter (PM) in flue gas generated due to the combustion of Indian coal. This coal is characterized by high ash content, low calorific value and low sulfur content resulting in the generation of a very large amount of highly electrically-resistive fly-ash; thereby requiring a very large size ESP to minimize the fly-ash emissions. However, the flue-gas particle size distribution analysis showed that 60% of the particles are above 15 microm size, which can be conveniently removed using a low-cost inertial separator such as a cyclone separator. It is proposed that a cyclone be used, as a pre-cleaner to ESP so that the large size fraction of fly-ash can be removed in the pre-cleaning and the remaining flue-gas entering the ESP will then contain only small size particles with low dust loading, thereby requiring a small ESP, and improving overall efficiency of dust removal. A low efficiency (65%), high throughput cyclone is considered for pre-cleaning flue gas and the ESP is designed for removal of the remaining 35% fly-ash from the flue gas. It is observed that with 100% dust load, the ESP requires six fields per pass, whereas with cyclone as a pre-cleaner, it requires only five fields per pass. Introducing cyclone into the flue gas path results in additional head loss, which needs to be overcome by providing additional power to induced draft (ID) fan. The permissible head loss due to the cyclone is estimated by comparing the power requirement in the bag filter control unit and cyclone-ESP combined unit. It is estimated that a head loss of 10 cm of water can be permitted across the cyclone so as to design the same for 65% efficiency.


Subject(s)
Air Pollutants/chemistry , Coal , Power Plants , Filtration , Humans , Incineration , India
11.
Waste Manag Res ; 19(6): 573-8, 2001 Dec.
Article in English | MEDLINE | ID: mdl-12201688

ABSTRACT

Solar Evaporation Ponds (SEP) were used by Union Carbide India Limited (UCIL), Bhopal for storage of wastewater containing high concentrations of inorganic chemicals especially chlorides. Area occupied by the SEPs had to be recovered due to closure of the plant. A prerequisite to the reclamation of the SEP area is a study of adjoining soil and groundwater, which may be contaminated due to possible leakage in the pond. Surface soil, subsurface soil and groundwater samples were collected and analysed. The electrical conductivity method was employed inside the pond to test for leak in the geo-membrane liner. This was further confirmed by physically checking the liners. Based on the wet period, total rainfall and evaporation rate of the region, drying of remaining wastewater by spreading in dry ponds followed by pond dismantling was scheduled.


Subject(s)
Chemical Industry , Conservation of Natural Resources , Waste Disposal, Fluid/methods , Chlorides/analysis , Environmental Monitoring , Environmental Pollution/prevention & control , India , Rain , Solar Energy , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...