Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Struct Dyn ; 8(2): 024102, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33869662

ABSTRACT

In the past decade, there was increased research interest in studying internal motions of flexible proteins in solution using Neutron Spin Echo (NSE) as NSE can simultaneously probe the dynamics at the length and time scales comparable to protein domain motions. However, the collective intermediate scattering function (ISF) measured by NSE has the contributions from translational, rotational, and internal motions, which are rather complicated to be separated. Widely used NSE theories to interpret experimental data usually assume that the translational and rotational motions of a rigid particle are decoupled and independent to each other. To evaluate the accuracy of this approximation for monoclonal antibody (mAb) proteins in solution, dissipative particle dynamic computer simulation is used here to simulate a rigid-body mAb for up to about 200 ns. The total ISF together with the ISFs due to only the translational and rotational motions as well as their corresponding effective diffusion coefficients is calculated. The aforementioned approximation introduces appreciable errors to the calculated effective diffusion coefficients and the ISFs. For the effective diffusion coefficient, the error introduced by this approximation can be as large as about 10% even though the overall agreement is considered reasonable. Thus, we need to be cautious when interpreting the data with a small signal change. In addition, the accuracy of the calculated ISFs due to the finite computer simulation time is also discussed.

2.
Article in English | MEDLINE | ID: mdl-25353728

ABSTRACT

We present experiments and simulations that show a fundamental scaling for both the rheology and microstructure of flowing gels. Unique flow-SANS measurements demonstrate that the structure orients along both the neutral and compression axis. We quantify the anisotropy using a single parameter, α, that scales by a dimensionless number, M^{'}, that arises from a force balance on a particle. Simulations support the scalings and confirm the results are independent of the shape and range of the potential suggesting a universal for colloidal gels with short-ranged attractions.


Subject(s)
Adhesives/chemistry , Models, Chemical , Models, Molecular , Rheology/methods , Silica Gel/chemistry , Anisotropy , Colloids , Compressive Strength , Computer Simulation , Elastic Modulus , Materials Testing , Shear Strength , Stress, Mechanical , Viscosity
3.
J Res Natl Inst Stand Technol ; 113(3): 131-42, 2008.
Article in English | MEDLINE | ID: mdl-27096116

ABSTRACT

This is the third in a series of articles that describe, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate scientific discovery. In this article we focus on the use of high performance computing and visualization for simulations of nanotechnology.

4.
J Res Natl Inst Stand Technol ; 107(3): 223-45, 2002.
Article in English | MEDLINE | ID: mdl-27446728

ABSTRACT

This is the second in a series of articles describing a wide variety of projects at NIST that synergistically combine physical science and information science. It describes, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate research. The examples include scientific collaborations in the following areas: (1) High Precision Energies for few electron atomic systems, (2) Flows of suspensions, (3) X-ray absorption, (4) Molecular dynamics of fluids, (5) Nanostructures, (6) Dendritic growth in alloys, (7) Screen saver science, (8) genetic programming.

SELECTION OF CITATIONS
SEARCH DETAIL
...