Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Rep Methods ; 3(5): 100463, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37323571

ABSTRACT

The lack of preparedness for detecting and responding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen (i.e., COVID-19) has caused enormous harm to public health and the economy. Testing strategies deployed on a population scale at day zero, i.e., the time of the first reported case, would be of significant value. Next-generation sequencing (NGS) has such capabilities; however, it has limited detection sensitivity for low-copy-number pathogens. Here, we leverage the CRISPR-Cas9 system to effectively remove abundant sequences not contributing to pathogen detection and show that NGS detection sensitivity of SARS-CoV-2 approaches that of RT-qPCR. The resulting sequence data can also be used for variant strain typing, co-infection detection, and individual human host response assessment, all in a single molecular and analysis workflow. This NGS work flow is pathogen agnostic and, therefore, has the potential to transform how large-scale pandemic response and focused clinical infectious disease testing are pursued in the future.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Pandemics , High-Throughput Nucleotide Sequencing/methods
2.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31964750

ABSTRACT

Human genital Chlamydia infection is a major public health concern due to the serious reproductive system complications. Chlamydia binds several receptor tyrosine kinases (RTKs) on host cells, including the epidermal growth factor receptor (EGFR), and activates cellular signaling cascades for host invasion, cytoskeletal remodeling, optimal inclusion development, and induction of pathogenic epithelial-mesenchyme transition (EMT). Chlamydia also upregulates transforming growth factor beta (TGF-ß) expression, whose signaling pathway synergizes with the EGFR cascade, but its role in infectivity, inclusions, and EMT induction is unknown. We hypothesized that the EGFR and TGF-ß signaling pathways cooperate during chlamydial infection for optimal inclusion development and stable EMT induction. The results revealed that Chlamydia upregulated TGF-ß expression as early as 6 h postinfection of epithelial cells and stimulated both the EGFR and TGF-ß signaling pathways. Inhibition of either the EGFR or TGF-ßR1 signaling substantially reduced inclusion development; however, the combined inhibition of both EGFR and TGF-ßR1 signaling reduced inclusions by over 90% and prevented EMT induction. Importantly, EGFR inhibition suppressed TGF-ß expression, and an inhibitory thrombospondin-1 (Tsp1)-based peptide inhibited chlamydia-induced EMT, revealing a major source of active TGF-ß during infection. Finally, TGF-ßR signaling inhibition suppressed the expression of transforming acidic coiled-coil protein-3 (TACC3), which stabilizes EGFR signaling, suggesting reciprocal regulation between TGF-ß and EGFR signaling during chlamydial infection. Thus, RTK-mediated host invasion by chlamydia upregulated TGF-ß expression and signaling, which cooperated with other cellular signaling cascades and cytoskeletal remodeling to support optimal inclusion development and EMT induction. This finding may provide new targets for chlamydial disease biomarkers and prevention.


Subject(s)
Chlamydia Infections/physiopathology , Chlamydia/growth & development , Epithelial Cells/microbiology , ErbB Receptors/metabolism , Host-Pathogen Interactions , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cell Line , Endocytosis , Epithelial-Mesenchymal Transition , Inclusion Bodies/microbiology , Mice , Models, Biological
3.
Sci Rep ; 9(1): 11405, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31388084

ABSTRACT

Genital chlamydia infection in women causes complications such as pelvic inflammatory disease and tubal factor infertility, but it is unclear why some women are more susceptible than others. Possible factors, such as time of day of chlamydia infection on chlamydial pathogenesis has not been determined. We hypothesised that infections during the day, will cause increased complications compared to infections at night. Mice placed under normal 12:12 light: dark (LD) cycle were infected intravaginally with Chlamydia muridarum either at zeitgeber time 3, ZT3 and ZT15. Infectivity was monitored by periodic vaginal swabs and chlamydiae isolation. Blood and vaginal washes were collected for host immunologic response assessments. The reproductive tracts of the mice were examined histopathologically, and fertility was determined by embryo enumeration after mating. Mice infected at ZT3 shed significantly more C. muridarum than mice infected at ZT15. This correlated with the increased genital tract pathology observed in mice infected at ZT3. Mice infected at ZT3 were less fertile than mice infected at ZT15. The results suggest that the time of day of infection influences chlamydial pathogenesis, it indicates a possible association between complications from chlamydia infection and host circadian clock, which may lead to a better understanding of chlamydial pathogenesis.


Subject(s)
Chlamydia Infections/immunology , Chlamydia muridarum/pathogenicity , Circadian Clocks/immunology , Pelvic Inflammatory Disease/immunology , Vagina/microbiology , Animals , Chlamydia Infections/blood , Chlamydia Infections/complications , Chlamydia Infections/microbiology , Disease Models, Animal , Female , Host Microbial Interactions/immunology , Humans , Mice , Pelvic Inflammatory Disease/microbiology , Photoperiod , Vagina/immunology , Vagina/pathology
4.
BMC Genomics ; 20(1): 143, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30777008

ABSTRACT

BACKGROUND: Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology. MicroRNAs regulate several pathophysiological processes of infectious and non-infectious etiologies. In this study, we tested the hypothesis that the miRNA profile of single and repeat genital chlamydial infections will be different and that these differences will be time dependent. Thus, we analyzed and compared differentially expressed mice genital tract miRNAs after single and repeat chlamydia infections using a C. muridarum mouse model. Mice were sacrificed and their genital tract tissues were collected at 1, 2, 4, and 8 weeks after a single and repeat chlamydia infections. Histopathology, and miRNA sequencing were performed. RESULTS: Histopathology presentation showed that the oviduct and uterus of reinfected mice were more inflamed, distended and dilated compared to mice infected once. The miRNAs expression profile was different in the reproductive tissues after a reinfection, with a greater number of miRNAs expressed after reinfection. Also, the number of miRNAs expressed each week after chlamydia infection and reinfection varied, with weeks eight and one having the highest number of differentially expressed miRNAs for chlamydia infection and reinfection respectively. Ten miRNAs; mmu-miR-378b, mmu-miR-204-5p, mmu-miR-151-5p, mmu-miR-142-3p, mmu-miR-128-3p, mmu-miR-335-3p, mmu-miR-195a-3p, mmu-miR-142-5p, mmu-miR-106a-5p and mmu-miR-92a-3p were common in both primary chlamydia infection and reinfection. Pathway analysis showed that, amongst other functions, the differentially regulated miRNAs control pathways involved in cellular and tissue development, disease conditions and toxicity. CONCLUSIONS: This study provides insights into the changes in miRNA expression over time after chlamydia infection and reinfection, as well as the pathways they regulate to determine pathological outcomes. The miRNAs networks generated in our study shows that there are differences in the focus molecules involved in significant biological functions in chlamydia infection and reinfection, implying that chlamydial pathogenesis occurs differently for each type of infection and that this could be important when determining treatments regime and disease outcome. The study underscores the crucial role of host factors in chlamydia pathogenesis.


Subject(s)
Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia , Genitalia/microbiology , MicroRNAs/genetics , Transcriptome , Animals , Biopsy , Cell Line , Chlamydia Infections/pathology , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Genitalia/pathology , Humans , Immunohistochemistry , Mice
5.
Biochem Biophys Res Commun ; 508(2): 421-429, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30503337

ABSTRACT

The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.


Subject(s)
Chlamydia muridarum/pathogenicity , Chlamydia trachomatis/pathogenicity , Host Microbial Interactions/physiology , Unfolded Protein Response/physiology , Animals , Chlamydia Infections/etiology , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia muridarum/metabolism , Chlamydia trachomatis/metabolism , HeLa Cells , Humans , Inclusion Bodies/metabolism , Mice , Myosin Type II/metabolism , Type III Secretion Systems/metabolism
6.
Int J Med Sci ; 15(13): 1449-1457, 2018.
Article in English | MEDLINE | ID: mdl-30443164

ABSTRACT

The artemisinin-based combined therapy (ACT) post-treatment illness in Plasmodium falciparum-endemic areas is characterized by vague malaria-like symptoms. The roles of treatment modality, persistence of parasites and host proinflammatory response in disease course are unknown. We investigated the hypothesis that ACT post-treatment syndrome is driven by parasite genetic polymorphisms and proinflammatory response to persisting mutant parasites. Patients were categorized as treated, untreated and malaria-negative. Malaria positive samples were analyzed for Pfcrt, Pfmdr1, K13 kelch gene polymorphisms, while all samples were evaluated for cytokines (TNF-α, IL-12p70, IL-10, TGF-ß, IFN-γ) and corticosteroids (cortisol and dexamethasone) levels. The treated patients exhibited higher levels of parasitemia, TNF-α, and cortisol, increased incidence of parasite genetic mutations, and greater number of mutant alleles per patient. In addition, corticosteroid levels declined with increasing number of mutant alleles. TGF-ß levels were negatively correlated with parasitemia, while IL-10 and TGF-ß were negatively correlated with increasing number of mutant alleles. However, IL-12 displayed slight positive correlation and TNF-α exhibited moderate positive correlation with increasing number of mutant alleles. Since post-treatment management ultimately results in patient recovery, the high parasite gene polymorphism may act in concert with induced cortisol and TNF-α to account for ACT post-treatment syndrome.


Subject(s)
Artemisinins/pharmacology , Plasmodium falciparum/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adrenal Cortex Hormones/metabolism , Humans , Hydrocortisone/metabolism , Malaria, Falciparum/genetics , Malaria, Falciparum/metabolism , Mutation/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polymorphism, Genetic/genetics , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/genetics
7.
Infect Immun ; 86(1)2018 01.
Article in English | MEDLINE | ID: mdl-29084894

ABSTRACT

The reproductive system complications of genital chlamydial infection include fallopian tube fibrosis and tubal factor infertility. However, the molecular pathogenesis of these complications remains poorly understood. The induction of pathogenic epithelial-mesenchymal transition (EMT) through microRNA (miRNA) dysregulation was recently proposed as the pathogenic basis of chlamydial complications. Focusing on fibrogenesis, we investigated the hypothesis that chlamydia-induced fibrosis is caused by EMT-driven generation of myofibroblasts, the effector cells of fibrosis that produce excessive extracellular matrix (ECM) proteins. The results revealed that the targets of a major category of altered miRNAs during chlamydial infection are key components of the pathophysiological process of fibrogenesis; these target molecules include collagen types I, III, and IV, transforming growth factor ß (TGF-ß), TGF-ß receptor 1 (TGF-ßR1), connective tissue growth factor (CTGF), E-cadherin, SRY-box 7 (SOX7), and NFAT (nuclear factor of activated T cells) kinase dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1a (Dyrk1a). Chlamydial induction of EMT resulted in the generation of α-smooth muscle actin (α-SMA)-positive myofibroblasts that produced ECM proteins, including collagen types I and III and fibronectin. Furthermore, the inhibition of EMT prevented the generation of myofibroblasts and production of ECM proteins during chlamydial infection. These findings may provide useful avenues for targeting EMT or specific components of the EMT pathways as a therapeutic intervention strategy to prevent chlamydia-related complications.


Subject(s)
Chlamydia Infections/complications , Chlamydia Infections/pathology , Chlamydia/pathogenicity , Epithelial-Mesenchymal Transition/physiology , Fibrosis/etiology , Fibrosis/pathology , Actins/metabolism , Animals , Cadherins/metabolism , Cell Line , Chlamydia Infections/microbiology , Collagen/metabolism , Connective Tissue Growth Factor/metabolism , Extracellular Matrix Proteins/metabolism , Fibronectins/metabolism , Fibrosis/microbiology , Mice , MicroRNAs/metabolism , Myofibroblasts/microbiology , Myofibroblasts/pathology , NFATC Transcription Factors/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , SOXF Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
8.
J Infect Dis ; 215(3): 456-465, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27932618

ABSTRACT

Chlamydia is an obligate intracellular bacterium that relies on host cells for essential nutrients and adenosine triphosphate (ATP) for a productive infection. Although the unfolded protein response (UPR) plays a major role in certain microbial infectivity, its role in chlamydial pathogenesis is unknown. We hypothesized that Chlamydia induces UPR and exploits it to upregulate host cell uptake and metabolism of glucose, production of ATP, phospholipids, and other molecules required for its replicative development and host survival. Using a combination of biochemical and pathway inhibition assays, we showed that the 3 UPR pathway transducers-protein kinase RNA-activated (PKR)-like ER kinase (PERK), inositol-requiring enzyme-1α (IRE1α), and activating transcription factor-6α (ATF6α)-were activated during Chlamydia infection. The kinase activity of PERK and ribonuclease (RNase) of IRE1α mediated the upregulation of hexokinase II and production of ATP via substrate-level phosphorylation. In addition, the activation of PERK and IRE1α promoted autophagy formation and apoptosis resistance for host survival. Moreover, the activation of IRE1α resulted in the generation of spliced X-box binding protein 1 (sXBP1) and upregulation of lipid production. The vital role of UPR pathways in Chlamydia development and pathogenesis could lead to the identification of potential molecular targets for therapeutics against Chlamydia.


Subject(s)
Chlamydia Infections/microbiology , Chlamydia/pathogenicity , Unfolded Protein Response , Activating Transcription Factor 6/metabolism , Animals , Apoptosis , Cell Survival , Chlamydia Infections/metabolism , Endoribonucleases/metabolism , Enzyme Activation , Female , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , eIF-2 Kinase/metabolism
9.
PLoS One ; 10(12): e0145198, 2015.
Article in English | MEDLINE | ID: mdl-26681200

ABSTRACT

Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV oncogene-transformed epithelial cells. These findings provide a novel understanding of the molecular pathogenesis of chlamydia-associated diseases, which may guide a rational prevention strategy.


Subject(s)
Chlamydia Infections/metabolism , Epithelial-Mesenchymal Transition , Animals , Cadherins/genetics , Cadherins/metabolism , Caspases/metabolism , Chlamydia Infections/pathology , Female , Fibronectins/genetics , Fibronectins/metabolism , HeLa Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Snail Family Transcription Factors , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Zinc Finger E-box-Binding Homeobox 1
10.
J Invertebr Pathol ; 109(2): 217-22, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22137876

ABSTRACT

The mosquito is a very important vector involved in the worldwide transmission of disease-causing viruses and parasites. Controlling the mosquito population remains one of the best means for preventing the serious infectious diseases of malaria, yellow fever, dengue, filariasis and so on and there has been an increasing interest in developing biopesticides as a useful substitute to chemical insecticides. As a result, Bacillus thuringiensis subsp. israelensis (Bti) has been extensively used due to its specificity and high toxicity to a variety of mosquito larvae. However it is prudent to seek alternatives to Bti with alternative spectra of mosquitocidal activity or that are able to overcome any resistance that might develop against Bti. The Bt S2160-1 strain was isolated from soil samples collected from Southern China and found to have a comparable mosquitocidal activity to Bti. However there were significant differences in terms of their plasmid profiles, crystal proteins produced and cry gene complement. A PCR-restriction fragment length polymorphism identification system was developed and used in order to identify novel cry-type genes and four such genes (cry30Ea, cry30Ga, cry50Ba and cry54Ba) were identified in Bt S2160-1. In conclusion, Bt S2160-1 has been identified as a potential alternative to Bti, which could be used for the control of mosquito populations in order to reduce the incidence of mosquito-borne diseases.


Subject(s)
Anopheles , Bacillus thuringiensis/metabolism , Bacterial Toxins/metabolism , Culicidae , Insecticides/metabolism , Mosquito Control/methods , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/ultrastructure , Biological Assay , Electrophoresis, Polyacrylamide Gel , Larva/microbiology , Microscopy, Electron, Scanning , Moths , Pest Control, Biological , Polymorphism, Restriction Fragment Length , Soil Microbiology , Spores, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...