Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 104: 105179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848615

ABSTRACT

BACKGROUND: Maternal pertussis vaccination with Tdap vaccine is recommended to protect newborns from severe postnatal infection. HIV-exposed uninfected (HEU) infants have a higher incidence of pertussis infection and may particularly benefit from maternal immunization. The impact of HIV infection on the quality of IgG and memory B cell (MBC) responses to Tdap vaccination in pregnant women (PW) living with HIV (PWH) is unknown. METHODS: In this observational study, humoral immune responses to Tdap vaccination, including IgG levels, Fc-dependent effector functions, and MBC frequencies, were measured before and after vaccination in 40 PWH and 42 HIV-uninfected PW. Placental transfer of IgG and avidity were assessed in cord blood (CB). Soluble and cellular immune activation markers were quantified at baseline. FINDINGS: One month after vaccination, PWH had lower frequencies of MBC compared with HIV-uninfected PW. At delivery, PWH had attenuated pertussis-specific IgG levels and Fc-dependent effector functions. Reduced levels of maternal vaccine polyfunctional IgG and IgG avidity were transferred to HEU as compared to HIV-unexposed newborns. After adjustment with ethnicity, maternal antibody levels and gestational age at vaccination, HIV infection was independently associated with decreased levels of PT specific-IgG in CB. Both maternal and neonatal pertussis-specific IgG responses as well as PT-specific IgG avidity were inversely correlated with maternal sCD14 levels before vaccination among PWH. INTERPRETATION: Maternal HIV infection is associated with attenuated humoral immune responses to Tdap vaccination that correlate with sCD14. Suboptimal transfer of maternal immunity may further increase the risk of severe pertussis infection in HEU infants. FUNDING: This work was supported by IRIS Fund managed by the Foundation Roi Baudouin [2017J1820690206902], Association Vésale pour la Recherche Médicale and the Medical Council of CHU Saint-Pierre and has been funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, under Award No. U19AI145825. N.D. is a clinical researcher and A.M. is Research Director at the Fonds de la Recherche Scientifique (F.R.S.-FNRS), Belgium. M.E.A. was partially supported by NIHNIAID1U19AI14825. This article is published with the support of the Fondation Universitaire of Belgium.


Subject(s)
HIV Infections , Immunoglobulin G , Memory B Cells , Humans , Female , Pregnancy , HIV Infections/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adult , Memory B Cells/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Infant, Newborn , Vaccination , Whooping Cough/immunology , Whooping Cough/prevention & control , Antibody Affinity/immunology
2.
Kidney Int Rep ; 9(3): 635-648, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481503

ABSTRACT

Introduction: Comorbidities and immunosuppressive therapies are associated with reduced immune responses to primary COVID-19 mRNA vaccination in kidney transplant recipients (KTRs). In healthy individuals, prior SARS-COV-2 infection is associated with increased vaccine responses, a phenotype called hybrid immunity. In this study, we explored the potential influence of immune suppression on hybrid immunity in KTRs. Methods: Eighty-two KTRs, including 59 SARS-CoV-2-naïve (naïve KTRs [N-KTRs]) and 23 SARS-CoV-2-experienced (experienced KTRs [E-KTRs]) patients, were prospectively studied and compared to 106 healthy controls (HCs), including 40 SARS-CoV-2-naïve (N-HCs) and 66 SARS-CoV-2-experienced (E-HCs) subjects. Polyfunctional antibody and T cell responses were measured following 2 doses of BNT162b2 mRNA vaccine. Associations between vaccine responses and clinical characteristics were studied by univariate and multivariate analyses. Results: In naïve KTRs, vaccine responses were markedly lower than in HCs and were correlated with older age, more recent transplantation, kidney retransplantation after graft failure, arterial hypertension, and treatment with mycophenolate mofetil (MMF). In contrast, vaccine responses of E-KTRs were similar to those of HCs and were associated with time between transplantation and vaccination, but not with the other risk factors associated with low vaccine responses in naïve KTRs. Conclusion: In conclusion, hybrid immunity overcomes immune suppression and provides potent humoral and cellular immunity to SARS-CoV-2 in KTRs.

3.
Front Immunol ; 14: 1107156, 2023.
Article in English | MEDLINE | ID: mdl-37006315

ABSTRACT

Objectives: To comprehensively analyze the quality of the antibody response between children with Multisystem inflammatory syndrome (MIS-C) and age-matched controls at one month after SARS-CoV-2 exposure, and infected in the same time-period. Methods: Serum from 20 MIS-C children at admission, and 14 control children were analyzed. Antigen specific antibody isotypes and subclasses directed against various antigens of SARS-CoV-2 as well as against human common coronavirus (HCoVs) and commensal or pathogenic microorganisms were assessed by a bead-based multiplexed serological assay and by ELISA. The functionality of these antibodies was also assessed using a plaque reduction neutralization test, a RBD-specific avidity assay, a complement deposition assay and an antibody-dependent neutrophil phagocytosis (ADNP) assay. Results: Children with MIS-C developed a stronger IgA antibody response in comparison to children with uncomplicated COVID-19, while IgG and IgM responses are largely similar in both groups. We found a typical class-switched antibody profile with high level of IgG and IgA titers and a measurable low IgM due to relatively recent SARS-CoV-2 infection (one month). SARS-CoV-2-specific IgG antibodies of MIS-C children had higher functional properties (higher neutralization activity, avidity and complement binding) as compared to children with uncomplicated COVID-19. There was no difference in the response to common endemic coronaviruses between both groups. However, MIS-C children had a moderate increase against mucosal commensal and pathogenic strains, reflecting a potential association between a disruption of the mucosal barrier with the disease. Conclusion: Even if it is still unclear why some children develop a MIS-C, we show here that MIS-C children produce higher titers of IgA antibodies, and IgG antibodies with higher functionality, which could reflect the local gastro-intestinal mucosal inflammation potentially induced by a sustained SARS-CoV-2 gut infection leading to continuous release of SARS-CoV-2 antigens.


Subject(s)
Blood Group Antigens , COVID-19 , Connective Tissue Diseases , Humans , Child , SARS-CoV-2 , Antibody Formation , Antibodies, Viral , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M
4.
Vaccine ; 41(17): 2829-2836, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36997386

ABSTRACT

BACKGROUND: Nursing home residents, a frail and old population group, respond poorly to primary mRNA COVID-19 vaccination. A third dose has been shown to boost protection against severe disease and death in this immunosenescent population, but limited data is available on the immune responses it induces. METHODS: In this observational cohort study, peak humoral and cellular immune responses were compared 28 days after the second and third doses of the BNT162b2 mRNA COVID-19 vaccine in residents and staff members of two Belgian nursing homes. Only individuals without evidence of previous SARS-CoV-2 infection at third dose administration were included in the study. In addition, an extended cohort of residents and staff members was tested for immune responses to a third vaccine dose and was monitored for vaccine breakthrough infections in the following six months. The trial is registered on ClinicalTrials.gov (NCT04527614). FINDINGS: All included residents (n = 85) and staff members (n = 88) were SARS-CoV-2 infection naïve at third dose administration. Historical blood samples from 28 days post second dose were available from 42 residents and 42 staff members. Magnitude and quality of humoral and cellular immune responses were strongly boosted in residents post third compared to post second dose. Increases were less pronounced in staff members than in residents. At 28 days post third dose, differences between residents and staff had become mostly insignificant. Humoral, but not cellular, responses induced by a third dose were predictive of subsequent incidence of vaccine breakthrough infection in the six months following vaccination. INTERPRETATION: These data show that a third dose of mRNA COVID-19 vaccine largely closes the gap in humoral and cellular immune response observed after primary vaccination between NH residents and staff members but suggest that further boosting might be needed to achieve optimal protection against variants of concern in this vulnerable population group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Adult , Population Groups , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , Breakthrough Infections , Nursing Homes , RNA, Messenger , Immunity , Antibodies, Viral , mRNA Vaccines
5.
Am J Transplant ; 23(5): 649-658, 2023 05.
Article in English | MEDLINE | ID: mdl-36773936

ABSTRACT

As solid organ transplant recipients are at high risk of severe COVID-19 and respond poorly to primary SARS-CoV-2 mRNA vaccination, they have been prioritized for booster vaccination. However, an immunological correlate of protection has not been identified in this vulnerable population. We conducted a prospective monocentric cohort study of 65 kidney transplant recipients who received 3 doses of BNT162b2 mRNA vaccine. Associations among breakthrough infection (BTI), vaccine responses, and patient characteristics were explored in 54 patients. Symptomatic COVID-19 was diagnosed in 32% of kidney transplant recipients during a period of 6 months after booster vaccination. During this period, SARS-CoV-2 delta and omicron were the dominant variants in the general population. Univariate Analyses identified the avidity of SARS-CoV-2 receptor binding domain binding IgG, neutralizing antibodies, and SARS-CoV-2 S2-specific interferon gamma responses as correlates of protection against BTI. No demographic or clinical parameter correlated with the risk of BTI. In multivariate analysis, the risk of BTI was best predicted by neutralizing antibody and S2-specific interferon gamma responses. In conclusion, T cell responses may help compensate for the suboptimal antibody response to booster vaccination in kidney transplant recipients. Further studies are needed to confirm these findings.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Cohort Studies , Interferon-gamma , Kidney Transplantation/adverse effects , Prospective Studies , Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , Immunoglobulin G , Transplant Recipients , Vaccination
6.
Open Forum Infect Dis ; 9(11): ofac554, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36467295

ABSTRACT

Background: The basis of the less severe clinical presentation of coronavirus disease 2019 (COVID-19) in children as compared with adults remains incompletely understood. Studies have suggested that a more potent boosting of immunity to endemic common cold coronaviruses (HCoVs) may protect children. Methods: To test this hypothesis, we conducted a detailed analysis of antibodies induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children aged 2 months to 14 years. Results: Younger children had higher titers of antibodies to SARS-CoV-2 receptor binding domain (RBD), S1 but not S2 domain, and total spike (S) protein, higher avidity RBD immunoglobulin G, and higher titers of neutralizing and complement-activating antibodies as compared with older children. In contrast, older children had higher titers of antibodies to HCoVs, which correlated with antibodies to the SARS-CoV-2 S2 domain but not with neutralizing or complement-activating antibodies. Conclusions: These results reveal a unique capacity of young children to develop effector antibody responses to SARS-CoV-2 infection independently of their immunity to HCoVs.

7.
Clin Infect Dis ; 75(1): e695-e704, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34864935

ABSTRACT

BACKGROUND: Residents of nursing homes (NHs) are at high risk of coronavirus disease 2019 (COVID-19)-related disease and death and may respond poorly to vaccination because of old age and frequent comorbid conditions. METHODS: Seventy-eight residents and 106 staff members, naive to infection or previously infected with severe acute respiratory syndrome coronavirus (SARS-CoV-2), were recruited in NHs in Belgium before immunization with 2 doses of 30 µg BNT162b2 messenger RNA (mRNA) vaccine at days 0 and 21. Binding antibodies (Abs) to SARS-CoV-2 receptor-binding domain (RBD), spike domains S1 and S2, RBD Ab avidity, and neutralizing Abs against SARS-CoV-2 wild type and B.1.351 were assessed at days 0, 21, 28, and 49. RESULTS: SARS-CoV-2-naive residents had lower Ab responses to BNT162b2 mRNA vaccination than naive staff. These poor responses involved lower levels of immunoglobulin (Ig) G to all spike domains, lower avidity of RBD IgG, and lower levels of Abs neutralizing the vaccine strain. No naive residents had detectable neutralizing Abs to the B.1.351 variant. In contrast, SARS-CoV-2-infected residents had high responses to mRNA vaccination, with Ab levels comparable to those in infected staff. Cluster analysis revealed that poor vaccine responders included not only naive residents but also naive staff, emphasizing the heterogeneity of responses to mRNA vaccination in the general population. CONCLUSIONS: The poor Ab responses to mRNA vaccination observed in infection-naive NH residents and in some naive staff members suggest suboptimal protection against breakthrough infection, especially with variants of concern. These data support the administration of a third dose of mRNA vaccine to further improve protection of NH residents against COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunoglobulin G , Nursing Homes , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...