Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 152(9): 1916-1932, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36637144

ABSTRACT

Basal-like breast cancer (BLBC) is the most aggressive and heterogeneous breast cancer (BC) subtype. Conventional chemotherapies represent next to surgery the most frequently employed treatment options. Unfortunately, resistant tumor phenotypes often develop, resulting in therapeutic failure. To identify the early events occurring upon the first drug application and initiating chemotherapy resistance in BLBC, we leveraged the WAP-T syngeneic mammary carcinoma mouse model and we developed a strategy combining magnetic-activated cell sorting (MACS)-based tumor cell enrichment with high-throughput transcriptome analyses. We discovered that chemotherapy induced a massive gene expression reprogramming toward stemness acquisition to tolerate and survive the cytotoxic treatment in vitro and in vivo. Retransplantation experiments revealed that one single cycle of cytotoxic drug combination therapy (Cyclophosphamide, Adriamycin and 5-Fluorouracil) suffices to induce resistant tumor cell phenotypes in vivo. We identified Axl and its ligand Pros1 as highly induced genes driving cancer stem cell (CSC) properties upon chemotherapy in vivo and in vitro. Furthermore, from our analysis of BLBC patient datasets, we found that AXL expression is also strongly correlated with CSC-gene signatures, a poor response to conventional therapies and worse survival outcomes in those patients. Finally, we demonstrate that AXL inhibition sensitized BLBC-cells to cytotoxic treatment in vitro. Together, our data support AXL as a promising therapeutic target to optimize the efficiency of conventional cytotoxic therapies in BLBC.


Subject(s)
Antineoplastic Agents , Carcinoma , Mice , Animals , Antineoplastic Agents/pharmacology , Signal Transduction , Cyclophosphamide/pharmacology , Neoplastic Stem Cells/metabolism , Carcinoma/metabolism , Cell Line, Tumor
2.
Sci Rep ; 12(1): 18565, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329181

ABSTRACT

Cytokine receptor-like factor 3 (CRLF3) is a conserved but largely uncharacterized orphan cytokine receptor of eumetazoan animals. CRLF3-mediated neuroprotection in insects can be stimulated with human erythropoietin. To identify mechanisms of CRLF3-mediated neuroprotection we studied the expression and proapoptotic function of acetylcholinesterase in insect neurons. We exposed primary brain neurons from Tribolium castaneum to apoptogenic stimuli and dsRNA to interfere with acetylcholinesterase gene expression and compared survival and acetylcholinesterase expression in the presence or absence of the CRLF3 ligand erythropoietin. Hypoxia increased apoptotic cell death and expression of both acetylcholinesterase-coding genes ace-1 and ace-2. Both ace genes give rise to single transcripts in normal and apoptogenic conditions. Pharmacological inhibition of acetylcholinesterases and RNAi-mediated knockdown of either ace-1 or ace-2 expression prevented hypoxia-induced apoptosis. Activation of CRLF3 with protective concentrations of erythropoietin prevented the increased expression of acetylcholinesterase with larger impact on ace-1 than on ace-2. In contrast, high concentrations of erythropoietin that cause neuronal death induced ace-1 expression and hence promoted apoptosis. Our study confirms the general proapoptotic function of AChE, assigns a role of both ace-1 and ace-2 in the regulation of apoptotic death and identifies the erythropoietin/CRLF3-mediated prevention of enhanced acetylcholinesterase expression under apoptogenic conditions as neuroprotective mechanism.


Subject(s)
Acetylcholinesterase , Erythropoietin , Animals , Humans , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Erythropoietin/genetics , Erythropoietin/pharmacology , Erythropoietin/metabolism , Neurons/metabolism , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Insecta/metabolism , Hypoxia/metabolism , Receptors, Cytokine/metabolism
3.
Apoptosis ; 25(9-10): 730-746, 2020 10.
Article in English | MEDLINE | ID: mdl-32761307

ABSTRACT

Apoptosis plays a major role in development, tissue renewal and the progression of degenerative diseases. Studies on various types of mammalian cells reported a pro-apoptotic function of acetylcholinesterase (AChE), particularly in the formation of the apoptosome and the degradation of nuclear DNA. While three AChE splice variants are present in mammals, invertebrates typically express two ache genes that code for a synaptically located protein and a protein with non-synaptic functions respectively. In order to investigate a potential contribution of AChE to apoptosis in insects, we selected the migratory locust Locusta migratoria. We established primary neuronal cultures of locust brains and characterized apoptosis progression in vitro. Dying neurons displayed typical characteristics of apoptosis, including caspase-activation, nuclear condensation and DNA fragmentation visualized by TUNEL staining. Addition of the AChE inhibitors neostigmine and territrem B reduced apoptotic cell death under normal culture conditions. Moreover, both inhibitors completely suppressed hypoxia-induced neuronal cell death. Exposure of live animals to severe hypoxia moderately increased the expression of ace-1 in locust brains in vivo. Our results indicate a previously unreported role of AChE in insect apoptosis that parallels the pro-apoptotic role in mammalian cells. This similarity adds to the list of apoptotic mechanisms shared by mammals and insects, supporting the hypothesized existence of an ancient, complex apoptosis regulatory network present in common ancestors of vertebrates and insects.


Subject(s)
Acetylcholinesterase/genetics , Cell Death/genetics , Neurons/metabolism , Peptidyl-Dipeptidase A/genetics , Animals , Apoptosis/genetics , Brain/metabolism , Brain/pathology , Cell Nucleus/genetics , DNA Fragmentation , Grasshoppers/genetics , Grasshoppers/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Insecta/genetics , Insecta/metabolism , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...