Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37834324

ABSTRACT

SARS-CoV-2 infection, discovered and isolated in Wuhan City, Hubei Province, China, causes acute atypical respiratory symptoms and has led to profound changes in our lives. COVID-19 is characterized by a wide range of complications, which include pulmonary embolism, thromboembolism and arterial clot formation, arrhythmias, cardiomyopathy, multiorgan failure, and more. The disease has caused a worldwide pandemic, and despite various measures such as social distancing, various preventive strategies, and therapeutic approaches, and the creation of vaccines, the novel coronavirus infection (COVID-19) still hides many mysteries for the scientific community. Oxidative stress has been suggested to play an essential role in the pathogenesis of COVID-19, and determining free radical levels in patients with coronavirus infection may provide an insight into disease severity. The generation of abnormal levels of oxidants under a COVID-19-induced cytokine storm causes the irreversible oxidation of a wide range of macromolecules and subsequent damage to cells, tissues, and organs. Clinical studies have shown that oxidative stress initiates endothelial damage, which increases the risk of complications in COVID-19 and post-COVID-19 or long-COVID-19 cases. This review describes the role of oxidative stress and free radicals in the mediation of COVID-19-induced mitochondrial and endothelial dysfunction.


Subject(s)
COVID-19 , Humans , COVID-19/complications , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Inflammation , Oxidative Stress , Free Radicals
2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37895836

ABSTRACT

Aminoglycoside antibiotics and gentamicin (GN), in particular, are still widely used in clinical practice. It is a well-known fact that GN causes nephrotoxicity, and redox disturbances are discussed as a factor in its side effects. Recently, a new type of cell oxidative death, named ferroptosis, was discovered; it is associated with iron accumulation in the cell, glutathione (GSH) depletion and inactivation of glutathione peroxidase-4 (GPX4), reactive oxygen species (ROS) increment with concomitant lipid peroxidation. In this regard, a possible connection between GN-induced renal damage, ferroptosis and the overall antioxidant status of the organism could be investigated. Moreover, due to its beneficial effects, GN is still one of the main choices as a therapeutic agent for several diseases, and the possible reduction of its side effects with the application of certain antioxidants will be of important clinical significance. The study was conducted with adult male white mice divided into several groups (n = 6). GN nephrotoxicity was induced by the administration of GN 100-200 mg/kg i.p. for 10 days. The control group received only saline. The other groups received either Vitamin E (400 mg/kg p.o.) or Silymarin (200 mg/kg p.o.) applied alone or together with GN for the same period. After the end of the study, the animals were sacrificed, and blood and tissue samples were taken for the assessment of biochemical parameters and antioxidant status, as well as routine and specific for GPX4 histochemistry examination. The experimental results indicate that GN-induced nephrotoxicity negatively modulates GPX4 activity and is associated with increased production of ROS and lipid peroxidation. The groups treated with antioxidants demonstrated preserved antioxidant status and better GPX4 activity. In conclusion, the inhibition of ROS production and especially the suppression of ferroptosis, could be of clinical potential and can be applied as a means of reducing the toxic effects of GN application.

3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37686346

ABSTRACT

The present study aimed to investigate and compare biomarkers of oxidative stress and the activity of antioxidant enzymes in the plasma of patients with different stages of diabetic nephropathy. For this purpose, we studied (1) the levels of reactive oxygen species and reactive nitrogen species as oxidative stress parameters, (2) lipid and protein oxidation, (3) the activity of antioxidant enzymes, and (4) cytokine production. Patients with type 2 diabetes mellitus were divided into three groups according to the loss of renal function: patients with compensated diabetes mellitus with normal renal function DMT2N0 measured as an estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 m2, a group with decompensated diabetes mellitus with complication diabetic nephropathy and mild-to-moderate loss of renal function DMT2N1 (eGFR < 60 mL/min/1.73 m2: 59-45 mL/min/1.73 m2), and a decompensated diabetes mellitus with diabetic nephropathy group with moderate-to-severe loss of renal function DMT2N2 (eGFR > 30 mL/min/1.73 m2: 30-44 mL/min/1.73 m2). All results were compared with healthy volunteers. The results showed that patients with diabetic nephropathy had significantly higher levels of ROS, cytokine production, and end products of lipid and protein oxidation compared to healthy volunteers. Furthermore, patients with diabetic nephropathy had depleted levels of nitric oxide (NO), an impaired NO synthase (NOS) system, and reduced antioxidant enzyme activity (p < 0.05). These findings suggest that patients with impaired renal function are unable to compensate for oxidative stress. The decreased levels of NO radicals in patients with advanced renal complications may be attributed to damage NO availability in plasma. The study highlights the compromised oxidative status as a contributing factor to impaired renal function in patients with decompensated type 2 diabetes mellitus. The findings of this study have implications for understanding the pathogenesis of diabetic nephropathy and the role of oxidative stress and chronic inflammation in its development. The assessment of oxidative stress levels and inflammatory biomarkers may aid in the early detection and prediction of diabetic complications.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency , Humans , Diabetic Nephropathies/etiology , Diabetes Mellitus, Type 2/complications , Antioxidants , Oxidative Stress , Biomarkers , Nitric Oxide , Cytokines , Lipids
4.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36982882

ABSTRACT

Oxidative stress and the albumin oxidized form can lead to hypoalbuminemia, which is a predisposing factor for reduced treatment effectiveness and an increased mortality rate in severe COVID-19 patients. The aim of the study is to evaluate the application of free radical 3-Maleimido-PROXYL and SDSL-EPR spectroscopy in the in vitro determination of ox/red HSA in serum samples from patients with SARS-CoV-2 infection. Venous blood was collected from patients intubated (pO2 < 90%) with a positive PCR test for SARS-CoV-2 and controls. At the 120th minute after the incubation of the serum samples from both groups with the 3-Maleimido-PROXYL, the EPR measurement was started. The high levels of free radicals were determined through the nitroxide radical TEMPOL, which probably led to increased oxidation of HSA and hypoalbuminemia in severe COVID-19. The double-integrated spectra of 3-Maleimido-PROXYL radical showed a low degree of connectivity due to high levels of oxidized albumin in COVID-19 patients. The low concentrations of reduced albumin in serum samples partially inhibit spin-label rotation, with Amax values and ΔH0 spectral parameters comparable to those of 3-Maleimido-PROXYL/DMSO. Based on the obtained results, we suggest that the stable nitroxide radical 3-Maleimido-PROXYL can be successfully used as a marker to study oxidized albumin levels in COVID-19.


Subject(s)
COVID-19 , Hypoalbuminemia , Humans , Hypoalbuminemia/diagnosis , COVID-19/diagnosis , SARS-CoV-2 , Free Radicals , Albumins , COVID-19 Testing
5.
J Clin Med ; 12(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36902629

ABSTRACT

Since the beginning of the pandemic, a recommendation was made for the use of anticoagulants in high-risk hospitalized patients. This therapeutic approach has positive and negative effects regarding the outcome of the disease. Anticoagulant therapy prevents thromboembolic events, but it can also lead to spontaneous hematoma formation, or be accompanied by massive active bleeding. We present a 63-year-old COVID-19-positive female patient with a massive retroperitoneal hematoma and spontaneous left inferior epigastric artery injury.

6.
Antioxidants (Basel) ; 11(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36552520

ABSTRACT

The main factors in the COVID-19 pathology, which can initiate extensive structural changes at the cellular and molecular levels, are the generation of free radicals in abnormal amounts, and oxidative stress. Under "oxidative shock" conditions, the proteins undergo various modifications that affect their function and activity, and as a result distribute malfunctioning protein derivatives in the body. Human serum albumin is a small globular protein characterized by a high overall binding capacity for neutral lipophilic and acidic dosage forms. The albumin concentration is crucial for the maintenance of plasma oncotic pressure, the transport of nutrients, amino acids, and drugs, the effectiveness of drug therapy, and the prevention of drug toxicity. Hypoalbuminemia and structural defects molecule in the protein suggest a risk of changed metabolism and increased plasma concentration of unbound drugs. Therefore, the albumin structural and functional changes accompanied by low protein levels can be a serious prerequisite for ineffective therapy, frequent complications, and high mortality in patients with SARS-CoV-2 infection. The current opinion aims the research community the application of Site-Directed Spin Labeling Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) and 3-Maleimido-PROXYL radical in determining abnormalities of the albumin dynamics and protein concentrations in COVID-19 critical patients.

7.
Antioxidants (Basel) ; 11(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36139752

ABSTRACT

Liver damage severity depends on both the dose and the exposure duration. Oxidative stress may increase the Ochratoxine-A (OTA) hepatotoxicity and many antioxidants may counteract toxic liver function. The present study aims to investigate the hepatoprotective potential of Azadirachta indicaA (A. indica; neem oil) seed oil to reduce acute oxidative disorders and residual OTA toxicity in a 28-day experimental model. The activity of antioxidant and hepatic enzymes, cytokines and the levels of oxidative stress biomarkers -MDA, GSPx, Hydroxiproline, GST, PCC, AGEs, PGC-1, and STIR-1 were analyzed by ELISA. The free radicals ROS and RNS levels were measured by EPR. The protective effects were studied in BALB/C mice treated with A. indica seed oil (170 mg/kg), alone and in combination with OTA (1.25 mg/kg), by gavage daily for 28 days. At the end of the experiment, mice treated with OTA showed changes in liver and antioxidant enzymes, and oxidative stress parameters in the liver and blood. A. indica oil significantly reduced oxidative stress and lipid peroxidation compared to the OTA group. In addition, the hepatic histological evaluation showed significant adipose tissue accumulation in OTA-treated tissues, while treatment with 170 mg/kg A. indica oil showed moderate adipose tissue accumulation.

8.
Medicina (Kaunas) ; 58(7)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35888634

ABSTRACT

Background and Objectives: Achenbach's syndrome is usually a benign, self-limiting clinical condition presented with finger discoloration, pain, and edema. Etiology, pathogenesis, and incidence remain unknown due to the variety of clinical features and the diversity of disease states leading to digital ischemia. COVID-19 primarily affects microcirculation, causing endothelial damage and disseminated microthrombosis. Materials and Methods: We reviewed two cases of Caucasian women with Achenbach's syndrome after COVID-19 infection recovery between April and May 2021. Results: Here are presented two extremely rare cases of paroxysmal finger hematoma in two female patients after COVID-19 infection recovery. Conclusions: The exact etiology and pathophysiology of Achenbach's syndrome remain unclear. It is assumed that SARS-CoV-2 infection could be the triggering factor in the pathophysiological mechanism of paroxysmal finger hematoma. We highly recommend the implication of the synthetic prostacyclin receptor agonist (Iloprost) as a first-line conservative treatment in patients with Achenbach's syndrome and COVID-19 infection recovery.


Subject(s)
COVID-19 , Vascular Diseases , COVID-19/complications , Female , Fingers , Hematoma/complications , Humans , Rare Diseases/pathology , SARS-CoV-2 , Syndrome
9.
Toxics ; 10(7)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35878250

ABSTRACT

Among the groups of users of illicit substances, a high percentage are persons deprived of their liberty; at the same time, each social and age group is also affected, to one degree or another. The purpose of this study is to provide general data on the relationship between different psychostimulants, clinical and socio-demographic studies, and gender, both among the general population and in one of the most at-risk groups. This review identifies the use of illicit substances as gender-specific in the general population. A detailed study of the causal relationship between the use of illicit substances and gender was carried out. Electronic databases Academic Search Complete, PubMed, HealthCare, Web of Science, and Google Scholar were searched for relevant studies up to 2022 associated with drug abuse and mental and health disorders. The analysis indicated that the human population showed significant differences between the sex of the consumer as to the type of drug consumers, development of addiction, and relapse. We focus on the pathological changes caused by drug use, the personal and physiological individual traits that influence drug choice, and the extent of use in one of the most affected groups of individuals. The study may provide some guidance in developing gender-specific treatment and prevention, including response to some pharmacological and behavioral therapies. The review is intended for a wide audience of social workers, toxicologists, and pharmacologists.

10.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35326173

ABSTRACT

Bleomycin (BLM) administration is associated with multifunctional proteins inflammations and induction of idiopathic pulmonary fibrosis (IPF). Lemna minor L. extract, a free-floating monocot macrophyte possesses antioxidant and anti-inflammatory potential. The aim of the study was to examine the protective effect of L. minor extract on lung protein oxidation and oxidative stress modulation by BLM-induced pulmonary fibrosis in Balb/c mice. For this purpose, the protein carbonyl content, advanced glycation end product, nitroxide protein oxidation (5-MSL), and lipid peroxidation (as MDA and ROS), in lung cells were examined. The histological examinations, collagen deposition, and quantitative measurements of IL-1ß, IL-6, and TNF in lung tissues and blood were investigated. Intraperitoneal, BLM administration (0.069 U/mL; 0.29 U/kg b.w.) for 33 days, caused IPF induction in Balb/c mice. Pulmonary combining therapy was administered with L. minor at dose 120 mg/mL (0.187 mg/kg b.w.). L. minor histologically ameliorated BLM induced IPF in lung tissues. L. minor significantly modulated (p < 0.05) BLM-alterations induced in lung hydroxyproline, carbonylated proteins, 5-MSL-protein oxidation. Oxidative stress decreased levels in antioxidant enzymatic and non-enzymatic systems in the lung were significantly regulated (p < 0.05) by L. minor. L. minor decreased the IL-1ß, IL-6, and TNF-α expression in lung tissues and plasma. The L. minor improves the preventive effect/defense response in specific pulmonary protein oxidation, lipid peroxidation, ROS identifications, and cytokine modulation by BLM-induced chronic inflammations, and could be a good antioxidant, anti-inflammatory, and anti-fibrotic alternative or IPF prevention involved in their pathogenesis.

11.
Toxics ; 9(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34941752

ABSTRACT

Psychomotor stimulants are the most commonly used prohibited substances after cannabis. Globally, their use reaches epidemiological proportions and is one of the most common causes of death in many countries. The use of illicit drugs has negative effects on the cardiovascular system and is one of the causes of serious cardiovascular pathologies, ranging from abnormal heart rhythms to heart attacks and sudden cardiac death. The reactive oxygen species generation, toxic metabolites formation, and oxidative stress play a significant role in cocaine-induced cardiotoxicity. The aim of the present review is to assess acute and chronic cocaine toxicity by focusing on the published literature regarding oxidative stress levels. Hypothetically, this study can serve as a basis for developing a rapid and effective method for determining oxidative stress levels by monitoring changes in the redox status of patients with cocaine intoxication.

12.
Oxid Med Cell Longev ; 2019: 6373685, 2019.
Article in English | MEDLINE | ID: mdl-31089411

ABSTRACT

The present study was directed to the development of EPR methodology for distinguishing cells with different proliferative activities, using "redox imaging." Three nitroxide radicals were used as redox sensors: (a) mito-TEMPO-cell-penetrating and localized mainly in the mitochondria; (b) methoxy-TEMPO-cell-penetrating and randomly distributed between the cytoplasm and the intracellular organelles; and (c) carboxy-PROXYL-nonpenetrating in living cells and evenly distributed in the extracellular environment. The experiments were conducted on eleven cell lines with different proliferative activities and oxidative capacities, confirmed by conventional analytical tests. The data suggest that cancer cells and noncancer cells are characterized by a completely different redox status. This can be analyzed by EPR spectroscopy using mito-TEMPO and methoxy-TEMPO, but not carboxy-PROXYL. The correlation analysis shows that the EPR signal intensity of mito-TEMPO in cell suspensions is closely related to the superoxide level. The described methodology allows the detection of overproduction of superoxide in living cells and their identification based on the intracellular redox status. The experimental data provide evidences about the role of superoxide and hydroperoxides in cell proliferation and malignancy.


Subject(s)
Biomarkers/metabolism , Hydrogen Peroxide/metabolism , Superoxides/metabolism , Antioxidants/metabolism , Cell Line , Cell Proliferation , Cyclic N-Oxides/metabolism , Electron Spin Resonance Spectroscopy , Humans , Leukemia/metabolism , Lymphocytes/metabolism , Nitrogen Oxides/chemistry , Nitrogen Oxides/metabolism , Oxidation-Reduction
13.
Anticancer Res ; 37(10): 5373-5381, 2017 10.
Article in English | MEDLINE | ID: mdl-28982845

ABSTRACT

The intracellular redox balance (redox status) is a dynamic system that may change via many factors. Mitochondria are one of the most important among them. These organelles are the main intracellular source of energy. They are essential for maintaining cellular homeostasis due to regulation of many biochemical processes. The mitochondrial dynamics change during cellular activities and in some cases, can cause an overproduction of reactive oxygen species (ROS), which encourages the induction of oxidative DNA damage and up- or down-regulation of phosphatases, proliferative/anti-proliferative factors, apoptotic/anti-apoptotic factors, etc. Moreover, mitochondrial dysfunction and redox imbalance can continuously support and contribute to a wide range of pathologies, termed as "free radical diseases" (e.g., cancer, neurodegeneration, atherosclerosis, inflammation, etc.). This review article is focused on the mitochondrial dysfunction and cellular redox status as a hallmark of cell homeostasis and diagnostic marker of cancer. It is intended to broad readership - from students to specialists in the field.


Subject(s)
Free Radicals/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Neoplasms/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Antioxidants/metabolism , Humans , Mitochondria/pathology , Mitochondrial Diseases/pathology , Neoplasms/pathology , Oxidation-Reduction , Reactive Nitrogen Species/metabolism , Signal Transduction
14.
Anticancer Res ; 36(10): 5273-5279, 2016 10.
Article in English | MEDLINE | ID: mdl-27798888

ABSTRACT

The present study describes a new approach for direct imaging of redox status in live cells using paramagnetic spin-probes, which allows evaluation of the level of oxidative stress due to overproduction of superoxide. The method is based on redox cycling of cell/mitochondria-penetrating nitroxide radicals (e.g. mito-TEMPO) and their electron-paramagnetic resonance (EPR) contrast, which makes them useful molecular sensors for analysis of redox status and oxidative stress in cells and tissues. Oxidative stress was induced in normal human lymphocytes by treatment with 2-methoxyestradiol and rotenone (ME/Rot) at different concentrations. This combination provokes mitochondrial dysfunction, which is accompanied by overproduction of superoxide. The EPR measurements were performed in dynamics on X-Band spectrometer after addition of mito-TEMPO to cell suspensions. The intensity of the EPR signal in untreated cells decreased significantly, which indicates a conversion of paramagnetic mito-TEMPO to its non-contrast diamagnetic form (hydroxylamine - mito-TEMPOH) due to reduction. In ME/Rot-treated cells, the signal decreased more slowly and to a lower level with increasing the concentration of ME/Rot. These data indicate an induction of oxidative stress in the cells in a concentration-dependent manner. A very good positive correlation between the intensity of EPR signal of mito-TEMPO and the intracellular level of superoxide was found, analyzed by conventional dihydroethidium test (R=0.9143, p<0.001). In conclusion, our study demonstrated that cell-penetrating paramagnetic spin-probes, such as mito-TEMPO, are valuable tools for EPR imaging of the superoxide level in live cells, as well as for EPR imaging of mitochondrial dysfunction and metabolic activity, accompanied by superoxide imbalance.


Subject(s)
Lymphocytes/metabolism , Mitochondria/metabolism , Organophosphorus Compounds/pharmacology , Oxidative Stress , Piperidines/pharmacology , 2-Methoxyestradiol , Adult , Electron Spin Resonance Spectroscopy , Estradiol/analogs & derivatives , Humans , Oxidation-Reduction , Rotenone , Superoxides/metabolism
15.
ACS Chem Neurosci ; 6(12): 1922-9, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26367059

ABSTRACT

This study shows that a mitochondria-penetrating nitroxide probe (mito-TEMPO) allows detection of superoxide and visualization of mitochondrial dysfunction in living cells due to the effect of T1 shortening in MRI. Mitochondrial dysfunction was induced by treatment of cells with rotenone and 2-methoxyestradiol (2-ME/Rot). The MRI measurements were performed on 7T MRI. The 2-ME/Rot-treated cells were characterized by overproduction of superoxide, which was confirmed by a conventional dihydroethidium test. In the presence of mito-TEMPO, the intensity of MRI signal in 2-ME/Rot-treated cells was ∼30-40% higher, in comparison with that in untreated cells or culture media. In model (cell-free) systems, we observed that superoxide, but not hydrogen peroxide, increased the intensity of T1-weighted MRI signal of mito-TEMPO. Moreover, the superoxide restores the T1-weighted MRI contrast of mito-TEMPOH, a noncontrast (diamagnetic) analogue of mito-TEMPO. This was also confirmed by using EPR spectroscopy. The results demonstrate that superoxide radical is involved in the enhancement of T1-weighted MRI contrast in living cells, in the absence and presence of mito-TEMPO. This report gives a direction for discovering new opportunities for functional MRI, for detection of metabolic activity, accompanied by overproduction of superoxide, as well as by disturbance of the balance between superoxide and hydrogen peroxide, a very important approach to clarify the fine molecular mechanisms in the regulation of many pathologies. The visualization of mitochondrial activity in real-time can be crucial to clarify the molecular mechanism of the functional MRI in its commonly accepted definition, as a method for detection of neurovascular coupling.


Subject(s)
Jurkat Cells/metabolism , K562 Cells/metabolism , Magnetic Resonance Imaging , Mitochondria/drug effects , Superoxides/metabolism , 2-Methoxyestradiol , Cell Line, Tumor , Cells, Cultured , Cyclic N-Oxides/pharmacology , Dielectric Spectroscopy , Estradiol/analogs & derivatives , Estradiol/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Jurkat Cells/pathology , K562 Cells/pathology , Leukemia/pathology , Oxidants/pharmacology , Spin Labels , Time Factors , Tubulin Modulators/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...