Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
JAC Antimicrob Resist ; 6(2): dlae029, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38455379

ABSTRACT

Objectives: A multicentre study evaluating NG-Test DetecTool OXA-23 for the detection of OXA-23 carbapenemase directly from positive blood cultures (PBCs). Methods: The NG-Test DetecTool OXA-23 is an immunoassay that integrates a sample preparation device. We evaluated NG-Test DetecTool OXA-23 on 189 spiked and 126 clinical PBCs. The clinical samples' standard-of-care procedure consisted of bacterial identification from the first day of positivity by MALDI-TOF MS, conventional culture and antimicrobial susceptibility testing. The immunoassay results were verified molecularly. The strains used for the spiked samples consisted of well-characterized Acinetobacter baumannii and Proteus mirabilis strains. Results: The NG-Test DetecTool OXA-23 was evaluated on 315 PBCs and revealed sensitivity of 100% (95% CI: 98.21%-100.00%) and specificity of 100% (95% CI: 96.73%-100.00%). It provided 204 true-positive results for OXA-23 in 196 bottles with carbapenem-resistant A. baumannii (CRAB) and 8 bottles with carbapenem-resistant P. mirabilis and also provided 111 true-negative results. There were no false-positive and no false-negative results. Among the 315 PBCs studied, 83 clinical blood cultures collected in the ICU of a Greek university hospital, which were tested prospectively, all yielded CRAB, and OXA-23 was correctly detected in all samples from the first day of positivity using the NG-Test DetecTool OXA-23. Conclusions: The NG-Test DetecTool OXA-23 has exhibited excellent sensitivity and specificity for OXA-23 detection in PBCs and can provide valuable information for appropriate selection of antibiotic therapy and early implementation of infection control measures.

2.
J Antimicrob Chemother ; 78(12): 2830-2839, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37811550

ABSTRACT

BACKGROUND: Because of the high inoculum (105 cfu/mL) used in the EUCAST susceptibility testing of Aspergillus spp., determination of the minimal effective concentration (MEC) of echinocandins is challenging as the morphological differences are subtle. METHODS: The MECs of 10 WT and 4 non-WT Aspergillus fumigatus isolates were determined with the EUCAST E.Def 9.4. Plates were inoculated with increasing inocula (102-105 cfu/mL) and after 24 and 48 h of incubation, MECs were determined macroscopically (magnifying mirror) and microscopically (inverted microscope) by two observers, spectrophotometrically (OD at 405 nm) and colorimetrically (absorbance at 450/630 nm after 2 h incubation with 400 mg/L XTT/6.25 µM menadione). The interobserver (between observers)/intermethod (compared with the microscopic method) essential agreement (EA, ±1 2-fold dilution) and categorical agreement (CA) were determined for each inoculum. RESULTS: Echinocandin-induced microscopic hyphal alterations or macroscopic changes in turbidity were subtle with a 105 cfu/mL inoculum compared with the lower inocula of 103 and 102 cfu/mL, where more distinct changes in turbidity and formation of characteristic rosettes were obvious at the MEC after 48 h. A 105 cfu/mL inoculum resulted in wider MEC distributions (3-6 dilutions) and lower interobserver EA (69%), macroscopic-microscopic EA (26%) and CA (71%) compared with a 103 cfu/mL inoculum (2-3 dilutions, 100%, 100% and 100%, respectively). Spectrophotometric readings using a 103 cfu/mL inoculum showed good EA (57-93%) and excellent CA (86%-100%), while the XTT assay demonstrated excellent EA (93%) and CA (100%). CONCLUSIONS: A 48 h incubation using a 103 cfu/mL inoculum improved echinocandin MEC determination for A. fumigatus with the EUCAST method, while the colorimetric assay could allow automation.


Subject(s)
Aspergillus fumigatus , Echinocandins , Echinocandins/pharmacology , Antifungal Agents/pharmacology , Aspergillus , Spectrophotometry , Microbial Sensitivity Tests
3.
Med Mycol ; 61(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36477291

ABSTRACT

Aspergillus spp. isolated from non-BAL cultures of coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) patients may reflect colonization rather than infection. Sera (n = 181) from 49 adult ICU CAPA patients (24 probable and 25 possible CAPA) with bronchial secretions (BS) culture positive for Aspergillus spp. were collected and tested for Aspergillus DNA detection by species-specific real-time PCR. Overall, 30/49 (61%) patients were PCR positive. BS culture/serum PCR agreement was moderate (21/30; 70%). Based on serum PCR positive patients, all CAPAs were due to A. fumigatus (80%), A. flavus (10%), and A. terreus (10%). No A. niger/A. nidulans or mixed infections were found despite positive BS cultures.


Discordant results were observed between bronchial secretion cultures and species-specific serum PCR (30%) with A. fumigatus being by far the most common etiological agent of CAPA (80%). No A. niger/A. nidulans or mixed infections were found despite positive cultures.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Animals , Aspergillus/genetics , COVID-19/complications , Intensive Care Units , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/microbiology , Real-Time Polymerase Chain Reaction
4.
J Antimicrob Chemother ; 77(6): 1655-1661, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35323941

ABSTRACT

BACKGROUND: Increased fluconazole and echinocandin resistance in Candida glabrata requires prompt detection in routine settings. A phenotypic test based on the EUCAST E.DEF 7.3.2 protocol was developed for the detection of fluconazole- and anidulafungin-resistant isolates utilizing the colorimetric dye XTT. METHODS: Thirty-one clinical C. glabrata isolates, 11 anidulafungin resistant and 14 fluconazole resistant, were tested. After optimization studies, 0.5-2.5 × 105 cfu/mL of each isolate in RPMI 1640 + 2% d-glucose medium containing 100 mg/L XTT + 0.78 µΜ menadione and 0.06 mg/L anidulafungin (S breakpoint) or 16 mg/L fluconazole (I breakpoint) in 96-well flat-bottom microtitration plates were incubated at 37°C for 18 h; we also included drug-free wells. XTT absorbance was measured at 450 nm every 15 min. Differences between the drug-free and the drug-treated wells were assessed using Student's t-test at different timepoints. ROC curves were used in order to identify the best timepoint and cut-off. RESULTS: The XTT absorbance differences between fluconazole-containing and drug-free wells were significantly lower for the resistant isolates compared with susceptible increased exposure isolates (0.08 ±â€Š0.05 versus 0.25 ±â€Š0.06, respectively, P = 0.005) at 7.5 h, with a difference of <0.157 corresponding to 100% sensitivity and 94% specificity for detection of resistance. The XTT absorbance differences between anidulafungin-containing and drug-free wells were significantly lower for the resistant isolates compared with susceptible isolates (0.08 ±â€Š0.07 versus 0.200 ±â€Š0.03, respectively, P < 0.001) at 5 h, with a difference of <0.145 corresponding to 91% sensitivity and 100% specificity, irrespective of underlying mutations. CONCLUSIONS: A simple, cheap and fast phenotypic test was developed for detection of fluconazole- and anidulafungin-resistant C. glabrata isolates.


Subject(s)
Candida glabrata , Fluconazole , Anidulafungin/pharmacology , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Fluconazole/pharmacology , Humans , Microbial Sensitivity Tests
5.
Int J Antimicrob Agents ; 58(5): 106440, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34551356

ABSTRACT

Metallo-beta-lactamase (MBL)-producing Gram-negative bacteria are increasing worldwide and very few agents are active against these pathogens. Taniborbactam (formerly VNRX-5133) is a newly developed bicyclic boronate beta-lactamase inhibitor that directly inhibits all four Ambler classes of beta-lactamases. In the present study the in vitro activity of cefepime or meropenem combined with taniborbactam against 100 Klebsiella pneumoniae and cefepime combined with taniborbactam against 100 Pseudomonas aeruginosa molecularly characterized MBL-producing strains were investigated using ISO standard broth microdilution assays and compared with a panel of antimicrobial agents that are used in clinical practice (amikacin, aztreonam, ciprofloxacin, levofloxacin, gentamicin, piperacillin/tazobactam, imipenem, tigecycline, ceftolozane-tazobactam, cefepime-tazobactam, meropenem-vaborbactam, ceftazidime-avibactam). For K. pneumoniae isolates, the MIC90 values were ≥64 mg/L for all drugs except cefepime-taniborbactam (16 mg/L; 87% inhibited at ≤8/4 mg/L), meropenem-taniborbactam (4 mg/L; 94% inhibited at ≤8/4 mg/L) and tigecycline (8 mg/L), with high levels of resistance (≥65%) found for all approved comparator antimicrobials tested. For P. aeruginosa, the MIC90 values were ≥64 mg/L for all drugs except aztreonam (32 mg/L), cefepime-taniborbactam (32 mg/L; 88% inhibited at ≤16/4 mg/L) and ciprofloxacin (32 mg/L), with high levels of resistance (≥73%) for all approved drugs except aztreonam (27%). Taniborbactam reduced cefepime and meropenem MICs by a median 5 and 7 two-fold dilutions to ≤8 mg/L in 87% and 94% of MBL-producing K. pneumoniae isolates, and cefepime MICs by a median 5 two-fold dilutions to ≤16 mg/L in 86% of MBL-producing P. aeruginosa, respectively. The combinations cefepime-taniborbactam and meropenem-taniborbactam are promising alternative treatment options for infections by MBL-producing isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Borinic Acids/pharmacology , Carboxylic Acids/pharmacology , Cefepime/pharmacology , Klebsiella pneumoniae/drug effects , Meropenem/pharmacology , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors/pharmacology , Azabicyclo Compounds/pharmacology , Boronic Acids/pharmacology , Ceftazidime/pharmacology , Drug Combinations , Drug Therapy, Combination , Heterocyclic Compounds, 1-Ring/pharmacology , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , beta-Lactamases/genetics , beta-Lactamases/metabolism
6.
Article in English | MEDLINE | ID: mdl-33431413

ABSTRACT

Extended-spectrum-ß-lactamase (ESBL)-producing strains are increasing worldwide, limiting therapeutic options. Taniborbactam (VNRX-5133) is a newly developed ß-lactamase inhibitor with a wide spectrum of activity covering both serine and metallo enzymes. We therefore evaluated cefepime-taniborbactam activity against ESBL-producing isolates and determined the concentrations to be used in MIC determinations in the clinical laboratory. The in vitro activity of cefepime (0.06 to 256 mg liter-1) combined with taniborbactam (0.03 to 32 mg liter-1) against 129 clinically and molecularly well-documented ESBL-producing isolates (42 Escherichia coli, 39 Klebsiella pneumoniae, 28 Pseudomonas aeruginosa, 16 Enterobacter cloacae, 2 Citrobacter freundii, and 2 Enterobacter aerogenes) was tested with a broth microdilution checkerboard method based on the ISO standard. The MICs of cefepime alone and in combination, together with percentage resistance at different concentrations of taniborbactam, were calculated for each species and resistance mechanism. The median (range)/MIC90 of cefepime was 32 (0.125 to 256)/256 mg liter-1 for all Enterobacterales isolates (n = 101), with 72% being resistant, and 32 (8 to 256)/128 mg liter-1 for the 28 P. aeruginosa isolates, with 86% being resistant. The median (range)/90th percentile concentration of taniborbactam required to restore Enterobacterales susceptibility to cefepime (MIC ≤1 mg liter-1) was 0.06 (≤0.03 to 32)/4 mg liter-1 and P. aeruginosa susceptibility to increased exposure to cefepime (MIC ≤8 mg liter-1) 1 (≤0.032 to 32)/32 mg liter-1 At a fixed concentration of 4 mg liter-1 of taniborbactam, cefepime median (range)/MIC90 were reduced to 0.125 (0.06 to 4)/1 mg liter-1 for Enterobacterales with no resistant isolates found, and to 8 (2 to 64)/16 mg liter-1 for P. aeruginosa isolates, where 36% remained resistant. The combination cefepime-taniborbactam demonstrated a potent activity against ESBL isolates, restoring susceptibility of all Enterobacterales and two-thirds of P. aeruginosa isolates.


Subject(s)
Enterobacteriaceae , beta-Lactamase Inhibitors , Anti-Bacterial Agents/pharmacology , Borinic Acids , Carboxylic Acids , Cefepime , Cephalosporins/pharmacology , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics
7.
J Med Microbiol ; 69(5): 676-684, 2020 May.
Article in English | MEDLINE | ID: mdl-32228800

ABSTRACT

Introduction. Quantification of bacterial load in tissue homogenates in in vivo pharmacodynamic studies is cumbersome and time-consuming.Aim. We therefore developed a new method for quantifying bacterial load in tissue homogenates of animals treated with a ß-lactam and ß-lactamase inhibitor using growth curves.Methods. The log10 colony-forming units (c.f.u.) ml-1 of 184 thigh and lung homogenates from female CD-1 mice infected intranasally and intramuscularly with 4 Pseudomonas aeruginosa, 4 Klebsiella pneumoniae, 3 Enterobacter cloacae and 2 Escherichia coli strains treated with a ß-lactam drug and tazobactam were calculated using the standard approach of serial quantitative cultures and analysis of growth curves. Growth curves were obtained with continuous (every 10 min) monitoring of optical density at 630 nm (OD630) after 20 µl tissue homogenates were inoculated in total volume of 200 µl Mueller-Hinton broth in 96-well microtitration plates and incubated at 37 °C for 18 h.Results. The best correlation between log10 c.f.u. ml-1 determined with the serial quantitative cultures and growth curves was found at the time point corresponding to an OD630 of 0.25 increase above the baseline OD (average of first five timepoints) (R 2=0.918-0.999). The median (range) differences between the two methods was -0.19 (-1.79-1.69) with 86-97 % of all isolates and species being within 1 log10 c.f.u. ml-1 with 1 h hands-on-time and <13 h of incubation for 96 samples. Pharmacodynamic analysis showed similar dose-response relationships and 1 log kill dose estimations (paired t-test, P=0.112).Conclusion. The new technique resulted in comparable c.f.u. counts to those for the standard serial dilution/culture technique with minimal hands-on and turnaround times.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Bacteria/drug effects , Bacteria/growth & development , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Load , Dose-Response Relationship, Drug , Drug Resistance, Bacterial , Microbial Sensitivity Tests
8.
Article in English | MEDLINE | ID: mdl-32229492

ABSTRACT

CLSI and EUCAST susceptibility breakpoints for voriconazole and Candida albicans differ by one dilution (≤0.125 and ≤0.06 mg/liter, respectively) whereas the epidemiological cutoff values for EUCAST (ECOFF) and CLSI (ECV) are the same (0.03 mg/liter). We therefore determined the pharmacokinetic/pharmacodynamic (PK/PD) breakpoints of voriconazole against C. albicans for both methodologies with an in vitro PK/PD model, which was validated using existing animal PK/PD data. Four clinical wild-type and non-wild-type C. albicans isolates (voriconazole MICs, 0.008 to 0.125 mg/liter) were tested in an in vitro PK/PD model. For validation purposes, mouse PK were simulated and in vitro PD were compared with in vivo outcomes. Human PK were simulated, and the exposure-effect relationship area under the concentration-time curve for the free, unbound fraction of a drug from 0 to 24 h (fAUC0-24)/MIC was described for EUCAST and CLSI 24/48-h methods. PK/PD breakpoints were determined using the fAUC0-24/MIC associated with half-maximal activity (EI50) and Monte Carlo simulation analysis. The in vitro 24-h PD EI50 values of voriconazole against C. albicans were 2.5 to 5 (1.5 to 17) fAUC/MIC. However, the 72-h PD were higher at 133 (51 to 347) fAUC/MIC for EUCAST and 94 (35 to 252) fAUC/MIC for CLSI. The mean (95% confidence interval) probability of target attainment (PTA) was 100% (95 to 100%), 97% (72 to 100%), 83% (35 to 99%), and 49% (8 to 91%) for EUCAST and 100% (97 to 100%), 99% (85 to 100%), 91% (52 to 100%), and 68% (17 to 96%) for CLSI for MICs of 0.03, 0.06, 0.125, and 0.25 mg/liter, respectively. Significantly, >95% PTA values were found for EUCAST/CLSI MICs of ≤0.03 mg/liter. For MICs of 0.06 to 0.125 mg/liter, trough levels 1 to 4 mg/liter would be required to attain the PK/PD target. A PK/PD breakpoint of C. albicans voriconazole at the ECOFF/ECV of 0.03 mg/liter was determined for both the EUCAST and CLSI methods, indicating the need for breakpoint harmonization for the reference methodologies.


Subject(s)
Antifungal Agents , Candida albicans , Animals , Antifungal Agents/pharmacology , Candida , Mice , Microbial Sensitivity Tests , Voriconazole/pharmacology
9.
J Antimicrob Chemother ; 75(1): 140-148, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31665417

ABSTRACT

BACKGROUND: Voriconazole exhibits in vitro activity against Candida glabrata and Candida krusei (EUCAST/CLSI epidemiological cut-off values 1/0.25 and 1/0.5 mg/L, respectively). Yet, EUCAST found insufficient evidence to set breakpoints for these species. We explored voriconazole pharmacodynamics (PD) in an in vitro dynamic model simulating human pharmacokinetics (PK). METHODS: Four C. glabrata and three C. krusei isolates (voriconazole EUCAST and CLSI MICs of 0.03-2 mg/L) were tested in the PK/PD model simulating voriconazole exposures (t½ ∼6 h q12h dosing for 3 days). PK/PD breakpoints were determined calculating the PTA for exposure indices fAUC0-24/MIC associated with half-maximal activity (EI50) using Monte Carlo simulation analysis. RESULTS: Fungal load increased from 3.60±0.35 to 8.41±0.24 log10 cfu/mL in the drug-free control, with a maximum effect of ∼1 log10 kill of C. glabrata and C. krusei isolates with MICs of 0.06 and 0.25 mg/L, respectively, at high drug exposures. The 72 h log10 cfu/mL change versus fAUC0-24/MIC relationship followed a sigmoid curve for C. glabrata (R2=0.85-0.87) and C. krusei (R2=0.56-0.76) with EI50 of 49 (32-76) and 52 (33-78) fAUC/MIC for EUCAST and 55 (31-96) and 80 (42-152) fAUC/MIC for CLSI, respectively. The PTAs for C. glabrata and C. krusei isolates with EUCAST/CLSI MICs ≤0.125/≤0.06 mg/L were >95%. Isolates with EUCAST/CLSI MICs of 0.25-1/0.125-0.5 would require trough levels 1-4 mg/L; isolates with higher MICs would not attain the corresponding PK/PD targets without reaching toxicity. CONCLUSIONS: The in vitro PK/PD breakpoints for C. glabrata and C. krusei for EUCAST (0.125 mg/L) and CLSI (0.06 mg/L) bisected the WT populations. Trough levels of >4 mg/L, which are not clinically feasible, are necessary for efficacy against WT isolates.


Subject(s)
Antifungal Agents/pharmacokinetics , Candida glabrata/drug effects , Pichia/drug effects , Voriconazole/pharmacokinetics , Antifungal Agents/pharmacology , Drug Resistance, Fungal , Microbial Sensitivity Tests , Models, Biological , Monte Carlo Method , Voriconazole/pharmacology
10.
J Antimicrob Chemother ; 74(2): 387-394, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30376071

ABSTRACT

Background: Combination schemes are commonly used for the treatment of infections due to carbapenemase-producing Klebsiella pneumoniae (CP-Kp). We therefore investigated the in vitro effectiveness of double and triple combinations of meropenem, colistin and tigecycline against CP-Kp isolates with different resistance mechanisms in a static broth microdilution model and a pharmacokinetic-pharmacodynamic model. Methods: One WT isolate and seven CP-Kp isolates with different carbapenem resistance mechanisms and increasing MICs of meropenem (4-512 mg/L), colistin (0.5-32 mg/L) and tigecycline (0.25-4 mg/L) were tested with a 3D chequerboard microdilution method. Combinations were then assessed in an in vitro pharmacokinetic-pharmacodynamic model simulating 50 and 100 mg of tigecycline q12h as a 1 h infusion, 4.5 million units of colistin q12h as a 1 h infusion and 1 g of meropenem q8h as 1 and 0.5 h infusions for 2 days. Results: In the chequerboard assay, interactions within the triple combination were mainly additive with a median (range) fractional inhibitory index of 0.66 (0.22-1.26). In the dynamic model, meropenem alone was bactericidal against isolates with MICs up to 4 mg/L, whereas bactericidal activity was found with the double combination meropenem + colistin and the triple combination meropenem + colistin + tigecycline against CP-Kp isolates with meropenem MICs of 16 and 256 mg/L, respectively. A high dose (100 mg) of tigecycline and a prolonged infusion (1 h) of meropenem increased the efficacy of the triple combination. Conclusions: Despite the merely additive interactions in the chequerboard assay, the triple combination of meropenem, tigecycline and colistin was bactericidal in the dynamic model against highly resistant CP-Kp isolates. This effect was more pronounced if prolonged infusion of meropenem and high tigecycline dosing were used.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Klebsiella pneumoniae/drug effects , Meropenem/pharmacology , Tigecycline/pharmacology , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Drug Synergism , Klebsiella pneumoniae/enzymology , Microbial Sensitivity Tests , beta-Lactamases
11.
J Antimicrob Chemother ; 73(4): 953-961, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29377998

ABSTRACT

Objectives: Because the pharmacokinetic/pharmacodynamic (PK/PD) characteristics of colistin against Enterobacteriaceae are not well explored, we studied the activity of colistin against K. pneumoniae in an in vitro PK/PD model simulating different dosing regimens. Methods: Three clinical isolates of K. pneumoniae with MICs of 0.5, 1 and 4 mg/L were tested in an in vitro PK/PD model following a dose-fractionation design over a period of 24 h. A high and low inoculum of 107 and 104 cfu/mL with and without a heteroresistant subpopulation, respectively, were used. PK/PD indices associated with colistin activity were explored and Monte Carlo analysis was performed in order to determine the PTA for achieving a bactericidal effect (2 log kill). Results: The fAUC/MIC (R2 = 0.64-0.68) followed by fCmax/MIC (R2 = 0.55-0.63) best described colistin's 24 h log10 cfu/mL reduction for both low and high inocula. Dosing regimens with fCmax/MIC ≥6 were always associated with a bactericidal effect (P = 0.0025). However, at clinically achievable concentrations, usually below fCmax/MIC = 6, an fAUC/MIC ≥25 was more predictive of a bactericidal effect. Using a dosing regimen of 9 MU/day, the PTA for this pharmacodynamic target was 100%, 5%-70% and 0%, for isolates with MICs of ≤0.5, 1 and ≥2 mg/L, respectively. Dosing regimens that aim for a trough level of 1 mg/L achieve coverage of strains up to 0.5 mg/L (target trough/MIC = 2 mg/L). Conclusions: Characterization of the pharmacodynamics of colistin against Enterobacteriaceae in an in vitro model of infection indicates that a revision of current susceptibility breakpoints is needed. Therapeutic drug monitoring of colistin to achieve pharmacodynamic targets in individual patients is highly recommended.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Colistin/pharmacology , Colistin/pharmacokinetics , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Theoretical , Monte Carlo Method
12.
Neural Plast ; 2016: 8373020, 2016.
Article in English | MEDLINE | ID: mdl-26881135

ABSTRACT

The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP). This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease.


Subject(s)
Cannabinoids/therapeutic use , Retinal Diseases/drug therapy , Animals , Cannabinoids/administration & dosage , Cannabinoids/metabolism , Disease Models, Animal , Endocannabinoids/metabolism , Glaucoma/metabolism , Humans , Intraocular Pressure/drug effects , Neuroprotective Agents , Receptors, Cannabinoid/metabolism , Retina/drug effects , Retina/metabolism , Retinal Diseases/metabolism , Retinal Ganglion Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...