Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 7531, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37161051

ABSTRACT

Forecasting volcanic ash atmospheric pathways is of utmost importance for aviation. Volcanic ash can interfere with aircraft navigational instruments and can damage engine parts. Early warning systems, activated after volcanic eruptions can alleviate the impacts on aviation by providing forecasts of the volcanic ash plume dispersion. The quality of these short-term forecasts is subject to the accuracy of the meteorological wind fields used for the initialization of regional models. Here, we use wind profiling data from the first high spectral resolution lidar in space, Aeolus, to examine the impact of measured wind fields on regional NWP and subsequent volcanic ash dispersion forecasts, focusing on the case of Etna's eruption on March 2021. The results from this case study demonstrate a significant improvement of the volcanic ash simulation when using Aeolus-assimilated meteorological fields, with differences in wind speed reaching up to 8 m/s when compared to the control run. When comparing the volcanic ash forecast profiles with downwind surface-based aerosol lidar observations, the modeled field is consistent with the measurements only when Aeolus winds are assimilated. This result clearly demonstrates the potential of Aeolus and highlights the necessity of future wind profiling satellite missions for improving volcanic ash forecasting and hence aviation safety.

2.
J Dairy Res ; : 1-4, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35983806

ABSTRACT

In this research communication we describe a straightforward triplex-PCR protocol able to differentiate the origin of milk from three closely related species (goat, sheep and cow) in Halloumi, a cheese with Protected Designation of Origin (PDO), and yogurts. Halloumi must contain at least 51% sheep or goat milk, therefore, the fraudulent adulteration of this cheese with excess of cow milk must be routinely tested. The assay employs one universal forward primer and three species-specific reverse primers giving rise to 287 bp (cow), 313 bp (goat), and 336 bp (sheep) amplicons, under the same amplification conditions. This protocol, when used to test a small number of Cyprus commercial products, correctly detected mislabeling in Halloumi (2 out of 6 samples were adulterated) and yogurt brands (1 out of 4 was adulterated). The suggested protocol is a reliable tool for identifying the origin of milk in Halloumi cheeses and yogurts and can be used in any laboratory equipped with a thermocycler and an agarose gel electrophoresis apparatus.

3.
Sci Rep ; 8(1): 43, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311598

ABSTRACT

In this work, the relative dielectric permittivity of graphene oxide (GO), both its real and imaginary parts, have been measured under various humidity conditions at GHz. It is demonstrated that the relative dielectric permittivity increases with increasing humidity due to water uptake. This finding is very different to that at a couple of MHz or lower frequency, where the relative dielectric permittivity increases with decreasing humidity. This GO electrical property was used to create a battery-free wireless radio-frequency identification (RFID) humidity sensor by coating printed graphene antenna with the GO layer. The resonance frequency as well as the backscattering phase of such GO/graphene antenna become sensitive to the surrounding humidity and can be detected by the RFID reader. This enables battery-free wireless monitoring of the local humidity with digital identification attached to any location or item and paves the way for low-cost efficient sensors for Internet of Things (IoTs) applications.

4.
Nat Commun ; 8: 14410, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28194026

ABSTRACT

Weak interlayer interactions in van der Waals crystals facilitate their mechanical exfoliation to monolayer and few-layer two-dimensional materials, which often exhibit striking physical phenomena absent in their bulk form. Here we utilize mechanical exfoliation to produce a two-dimensional form of a mineral franckeite and show that the phase segregation of chemical species into discrete layers at the sub-nanometre scale facilitates franckeite's layered structure and basal cleavage down to a single unit cell thickness. This behaviour is likely to be common in a wider family of complex minerals and could be exploited for a single-step synthesis of van der Waals heterostructures, as an alternative to artificial stacking of individual two-dimensional crystals. We demonstrate p-type electrical conductivity and remarkable electrochemical properties of the exfoliated crystals, showing promise for a range of applications, and use the density functional theory calculations of franckeite's electronic band structure to rationalize the experimental results.


Subject(s)
Antimony/chemistry , Iron/chemistry , Lead/chemistry , Nanostructures/chemistry , Sulfides/chemistry , Tin/chemistry , Crystallization , Electric Conductivity , Microscopy, Atomic Force , Microscopy, Electron , Nanostructures/ultrastructure , Photoelectron Spectroscopy , Spectrometry, X-Ray Emission
6.
Nano Lett ; 16(3): 2023-32, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26840510

ABSTRACT

Two-dimensional crystals are promising building blocks for the new generation of energy materials due to their low volume, high surface area, and high transparency. Electrochemical behavior of these crystals determines their performance in applications such as energy storage/conversion, sensing, and catalysis. Nevertheless, the electrochemistry of an isolated monolayer of molybdenum disulfide, which is one of the most promising semiconducting crystals, has not been achieved to date. We report here on photoelectrochemical properties of pristine monolayer and few-layer basal plane MoS2, namely the electron transfer kinetics and electric double-layer capacitance, supported by an extensive physical and chemical characterization. This enables a comparative qualitative correlation among the electrochemical data, MoS2 structure, and external illumination, although the absolute magnitudes of the electron transfer and capacitance are specific to the redox mediator and electrolyte used in these measurements ([Ru(NH3)6](3+/2+) and LiCl, respectively). Our work shows a strong dependence of the electrochemical properties on the number of MoS2 layers and illumination intensity and proves that an effective interlayer charge transport occurs in bulk MoS2. This highlights the exciting opportunities for tuning of the electrochemical performance of MoS2 through modification of its structure, external environment, and illumination.

7.
Phys Chem Chem Phys ; 17(27): 17844-53, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26088339

ABSTRACT

Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)6(3-/4-), Ru(NH3)6(3+/2+) and IrCl6(2-/3-) are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications.

8.
Dalton Trans ; 43(27): 10388-91, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24100451

ABSTRACT

Atomically thin layers of materials, which are just a few atoms in thickness, present an attractive option for future electronic devices. Herein we characterize, optically and electronically, atomically thin tungsten disulphide (WS2), a layered semiconductor. We provide the distinctive Raman and photoluminescence signatures for single layers, and prepare field-effect transistors where atomically thin WS2 serves as the conductive channel. The transistors present mobilities µ = 10 cm(2) V(-1) s(-1) and exhibit ON/OFF ratios exceeding 100,000. Our results show that WS2 is an attractive option for applications in electronic and optoelectronic devices and pave the way for further studies in this two-dimensional material.

9.
ACS Nano ; 7(11): 10167-74, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24116975

ABSTRACT

Recent dramatic progress in studying various two-dimensional (2D) atomic crystals and their heterostructures calls for better and more detailed understanding of their crystallography, reconstruction, stacking order, etc. For this, direct imaging and identification of each and every atom is essential. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are ideal and perhaps the only tools for such studies. However, the electron beam can in some cases induce dramatic structure changes, and radiation damage becomes an obstacle in obtaining the desired information in imaging and chemical analysis in the (S)TEM. This is the case of 2D materials such as molybdenum disulfide MoS2, but also of many biological specimens, molecules, and proteins. Thus, minimizing damage to the specimen is essential for optimum microscopic analysis. In this article we demonstrate, on the example of MoS2, that encapsulation of such crystals between two layers of graphene allows for a dramatic improvement in stability of the studied 2D crystal and permits careful control over the defect nature and formation in it. We present STEM data collected from single-layer MoS2 samples prepared for observation in the microscope through three distinct procedures. The fabricated single-layer MoS2 samples were either left bare (pristine), placed atop a single-layer of graphene, or finally encapsulated between single graphene layers. Their behavior under the electron beam is carefully compared, and we show that the MoS2 sample "sandwiched" between the graphene layers has the highest durability and lowest defect formation rate compared to the other two samples, for very similar experimental conditions.

10.
Nat Commun ; 4: 2591, 2013.
Article in English | MEDLINE | ID: mdl-24107937

ABSTRACT

The application of graphene in sensor devices depends on the ability to appropriately functionalize the pristine graphene. Here we show the direct writing of tailored phospholipid membranes on graphene using dip-pen nanolithography. Phospholipids exhibit higher mobility on graphene compared with the commonly used silicon dioxide substrate, leading to well-spread uniform membranes. Dip-pen nanolithography allows for multiplexed assembly of phospholipid membranes of different functionalities in close proximity to each other. The membranes are stable in aqueous environments and we observe electronic doping of graphene by charged phospholipids. On the basis of these results, we propose phospholipid membranes as a route for non-covalent immobilization of various functional groups on graphene for applications in biosensing and biocatalysis. As a proof of principle, we demonstrate the specific binding of streptavidin to biotin-functionalized membranes. The combination of atomic force microscopy and binding experiments yields a consistent model for the layer organization within phospholipid stacks on graphene.


Subject(s)
Biomimetic Materials/chemistry , Graphite/chemistry , Membrane Lipids/chemistry , Phosphatidylcholines/chemistry , Printing/methods , Biocatalysis , Biosensing Techniques , Biotin/chemistry , Membranes, Artificial , Microscopy, Atomic Force , Nanotechnology , Printing/instrumentation , Protein Binding , Streptavidin/chemistry
11.
Nat Nanotechnol ; 8(2): 100-3, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23263726

ABSTRACT

The celebrated electronic properties of graphene have opened the way for materials just one atom thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional crystals, which can be assembled into three-dimensional stacks with atomic layer precision. Such layered structures have already demonstrated a range of fascinating physical phenomena, and have also been used in demonstrating a prototype field-effect tunnelling transistor, which is regarded to be a candidate for post-CMOS (complementary metal-oxide semiconductor) technology. The range of possible materials that could be incorporated into such stacks is very large. Indeed, there are many other materials with layers linked by weak van der Waals forces that can be exfoliated and combined together to create novel highly tailored heterostructures. Here, we describe a new generation of field-effect vertical tunnelling transistors where two-dimensional tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or chemical vapour deposition-grown graphene. The combination of tunnelling (under the barrier) and thermionic (over the barrier) transport allows for unprecedented current modulation exceeding 1 × 10(6) at room temperature and very high ON current. These devices can also operate on transparent and flexible substrates.

12.
Nano Lett ; 12(2): 617-21, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22149458

ABSTRACT

We use graphene bubbles to study the Raman spectrum of graphene under biaxial (e.g., isotropic) strain. Our Gruneisen parameters are in excellent agreement with the theoretical values. Discrepancy in the previously reported values is attributed to the interaction of graphene with the substrate. Bilayer balloons (intentionally pressurized membranes) have been used to avoid the effect of the substrate and to study the dependence of strain on the interlayer interactions.


Subject(s)
Graphite/chemistry , Membranes, Artificial , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...