Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 21(2): 866-78, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24176799

ABSTRACT

An experimental study to evaluate cavitation bubble dynamics is conducted. The aim is to predict the magnitude and statistical distribution of hydrodynamic impact pressure generated from the implosion of various individual acoustic cavitation bubbles near to a rigid boundary, considering geometrical features of the pitted area. A steel sample was subjected to cavitation impacts by an ultrasonic transducer with a 5mm diameter probe. The pitted surface was then examined using high-precision 3D optical interferometer techniques. Only the incubation period where surface is plastically deformed without material loss is taken into account. The exposure time was adjusted in the range of 3-60 s to avoid pit overlapping and a special procedure for pit analysis and characterisation was then followed. Moreover, a high-speed camera device was deployed to capture the implosion mechanisms of cavitation bubbles near to the surface. The geometrical characteristics of single incubation pits as well as pit clusters were studied and their deformation patterns were compared. Consequently, a reverse engineering approach was applied in order the hydrodynamic impact pressure from the implosion of an individual cavitation bubble to be determined. The characteristic parameters of the cavitation implosion process such as hydrodynamic impact pressure and liquid micro-jet impact velocity as well as the hydrodynamic severity of the cavitation impacts were quantified. It was found that the length of the hypotenuse of the orthographic projections from the center of the pit, which basically represents the deformed area of the pit, increases with the hydrodynamic impact aggressiveness in a linear rate. Majority of the hydrodynamic impacts were in the range of 0.4-1 GPa while the corresponding micro-jet velocities were found to be in the range of 200-700 m/s. Outcomes of this study, contribute to further understanding the cavitation intensity from the implosion of acoustically generated bubbles and could certainly represent a significant step towards developing more accurate cavitation models.

2.
Biomed Eng Online ; 2: 7, 2003 Mar 24.
Article in English | MEDLINE | ID: mdl-12694629

ABSTRACT

The provision of effective emergency telemedicine and home monitoring solutions are the major fields of interest discussed in this study. Ambulances, Rural Health Centers (RHC) or other remote health location such as Ships navigating in wide seas are common examples of possible emergency sites, while critical care telemetry and telemedicine home follow-ups are important issues of telemonitoring. In order to support the above different growing application fields we created a combined real-time and store and forward facility that consists of a base unit and a telemedicine (mobile) unit. This integrated system: can be used when handling emergency cases in ambulances, RHC or ships by using a mobile telemedicine unit at the emergency site and a base unit at the hospital-expert's site, enhances intensive health care provision by giving a mobile base unit to the ICU doctor while the telemedicine unit remains at the ICU patient site and enables home telemonitoring, by installing the telemedicine unit at the patient's home while the base unit remains at the physician's office or hospital. The system allows the transmission of vital biosignals (3-12 lead ECG, SPO2, NIBP, IBP, Temp) and still images of the patient. The transmission is performed through GSM mobile telecommunication network, through satellite links (where GSM is not available) or through Plain Old Telephony Systems (POTS) where available. Using this device a specialist doctor can telematically "move" to the patient's site and instruct unspecialized personnel when handling an emergency or telemonitoring case. Due to the need of storing and archiving of all data interchanged during the telemedicine sessions, we have equipped the consultation site with a multimedia database able to store and manage the data collected by the system. The performance of the system has been technically tested over several telecommunication means; in addition the system has been clinically validated in three different countries using a standardized medical protocol.


Subject(s)
Telecommunications , Telemedicine/methods , Telemedicine/organization & administration , Data Compression , Feasibility Studies , Monitoring, Physiologic/classification , Monitoring, Physiologic/instrumentation , Telecommunications/instrumentation , Telemedicine/instrumentation
3.
Technol Health Care ; 11(1): 61-76, 2003.
Article in English | MEDLINE | ID: mdl-12590159

ABSTRACT

The paper presents the enrichment of an existing e-referral / e-prescription application within a Regional Healthcare Information Network with security functionality, solving current authentication, integrity, non-repudiation and confidentiality issues and thus significantly enhancing the overall system security, operability, applicability and user acceptance. The application makes use of an underlying PKI framework, in order to provide strong authentication, digital signature, encryption and time-stamping services. XML is used for the representation of the healthcare data itself, the encrypted form of this data, as well as the relevant data security information, following W3C standards.


Subject(s)
Computer Communication Networks/standards , Computer Security , Drug Prescriptions , Humans , Referral and Consultation
SELECTION OF CITATIONS
SEARCH DETAIL
...