Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38540836

ABSTRACT

Routine, remote, and process analysis for foodstuffs is gaining attention and can provide more confidence for the food supply chain. A new generation of rapid methods is emerging both in the literature and in industry based on spectroscopy coupled with AI-driven modelling methods. Current published studies using these advanced methods are plagued by weaknesses, including sample size, abuse of advanced modelling techniques, and the process of validation for both the acquisition method and modelling. This paper aims to give a comprehensive overview of the analytical challenges faced in research and industrial settings where screening analysis is performed while providing practical solutions in the form of guidelines for a range of scenarios. After extended literature analysis, we conclude that there is no easy way to enhance the accuracy of the methods by using state-of-the-art modelling methods and the key remains that capturing good quality raw data from authentic samples in sufficient volume is very important along with robust validation. A comprehensive methodology involving suitable analytical techniques and interpretive modelling methods needs to be considered under a tailored experimental design whenever conducting rapid food analysis.

2.
Front Cell Dev Biol ; 11: 1260507, 2023.
Article in English | MEDLINE | ID: mdl-38020904

ABSTRACT

Whole-cell modeling is "the ultimate goal" of computational systems biology and "a grand challenge for 21st century" (Tomita, Trends in Biotechnology, 2001, 19(6), 205-10). These complex, highly detailed models account for the activity of every molecule in a cell and serve as comprehensive knowledgebases for the modeled system. Their scope and utility far surpass those of other systems models. In fact, whole-cell models (WCMs) are an amalgam of several types of "system" models. The models are simulated using a hybrid modeling method where the appropriate mathematical methods for each biological process are used to simulate their behavior. Given the complexity of the models, the process of developing and curating these models is labor-intensive and to date only a handful of these models have been developed. While whole-cell models provide valuable and novel biological insights, and to date have identified some novel biological phenomena, their most important contribution has been to highlight the discrepancy between available data and observations that are used for the parametrization and validation of complex biological models. Another realization has been that current whole-cell modeling simulators are slow and to run models that mimic more complex (e.g., multi-cellular) biosystems, those need to be executed in an accelerated fashion on high-performance computing platforms. In this manuscript, we review the progress of whole-cell modeling to date and discuss some of the ways that they can be improved.

3.
Food Chem ; 217: 735-742, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664692

ABSTRACT

The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques.


Subject(s)
Food Contamination/analysis , Olive Oil/analysis , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Models, Statistical , Plant Oils/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...