Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(11): e0207475, 2018.
Article in English | MEDLINE | ID: mdl-30458028

ABSTRACT

The aim of this work was to analyse the distribution of causal and candidate mutations associated to relevant productive traits in twenty local European pig breeds. Also, the potential of the SNP panel employed for elucidating the genetic structure and relationships among breeds was evaluated. Most relevant genes and mutations associated with pig morphological, productive, meat quality, reproductive and disease resistance traits were prioritized and analyzed in a maximum of 47 blood samples from each of the breeds (Alentejana, Apulo-Calabrese, Basque, Bísara, Majorcan Black, Black Slavonian (Crna slavonska), Casertana, Cinta Senese, Gascon, Iberian, Krskopolje (Krskopoljski), Lithuanian indigenous wattle, Lithuanian White Old Type, Mora Romagnola, Moravka, Nero Siciliano, Sarda, Schwäbisch-Hällisches Schwein (Swabian Hall pig), Swallow-Bellied Mangalitsa and Turopolje). We successfully analyzed allelic variation in 39 polymorphisms, located in 33 candidate genes. Results provide relevant information regarding genetic diversity and segregation of SNPs associated to production and quality traits. Coat color and morphological trait-genes that show low level of segregation, and fixed SNPs may be useful for traceability. On the other hand, we detected SNPs which may be useful for association studies as well as breeding programs. For instance, we observed predominance of alleles that might be unfavorable for disease resistance and boar taint in most breeds and segregation of many alleles involved in meat quality, fatness and growth traits. Overall, these findings provide a detailed catalogue of segregating candidate SNPs in 20 European local pig breeds that may be useful for traceability purposes, for association studies and for breeding schemes. Population genetic analyses based on these candidate genes are able to uncover some clues regarding the hidden genetic substructure of these populations, as the extreme genetic closeness between Iberian and Alentejana breeds and an uneven admixture of the breeds studied. The results are in agreement with available knowledge regarding breed history and management, although largest panels of neutral markers should be employed to get a deeper understanding of the population's structure and relationships.


Subject(s)
Breeding , Genetics, Population , Quantitative Trait Loci/genetics , Swine/genetics , Animals , Genotype , Meat , Phenotype , Polymorphism, Single Nucleotide/genetics , Spain , Swine/classification
2.
Food Chem ; 246: 90-98, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29291883

ABSTRACT

In this study, we applied a next generation sequencing (NGS) technology (Ion Torrent) for species identification based on three mitochondrial DNA (mtDNA) regions amplified on DNA extracted from dairy products. Sequencing reads derived from three libraries, obtained from artificial DNA pools or from pooled amplicons, were used to test the method. Then, sequencing results from five libraries obtained from two mixed goat and cow milk samples, one buffalo mozzarella cheese, one goat crescenza cheese and one artisanal cured ricotta cheese, were able to detect all expected species in addition to undeclared species in a few of them. Mining generated reads it was possible to identify different dairy species mitotypes and the presence of human DNA that could constitute a potential marker to monitor the hygienic level of dairy products. Overall results demonstrated the usefulness of NGS for species identification in food products and its possible application for food authentication.


Subject(s)
Dairy Products/analysis , Food Analysis/instrumentation , High-Throughput Nucleotide Sequencing/instrumentation , Semiconductors , Animals , Buffaloes/genetics , Cattle , Cheese/analysis , DNA, Mitochondrial , Food Analysis/methods , Goats/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Milk
3.
DNA Res ; 24(5): 487-498, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28460080

ABSTRACT

Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome.


Subject(s)
Evolution, Molecular , Genome , Genomics , INDEL Mutation , Polymorphism, Genetic , Sus scrofa/genetics , Animals , Cell Nucleus/genetics , DNA, Mitochondrial , Mitochondria/genetics , Phylogeny , Sequence Analysis, DNA
4.
Mar Genomics ; 28: 63-70, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27020381

ABSTRACT

European sea bass (Dicentrarchus labrax) is an important marine species for commercial and sport fisheries and aquaculture production. Recently, the European sea bass genome has been sequenced and assembled. This resource can open new opportunities to evaluate and monitor variability and identify variants that could contribute to the adaptation to farming conditions. In this work, two DNA pools constructed from cultivated European sea bass were sequenced using a next generation semiconductor sequencing approach based on Ion Proton sequencer. Using the first draft version of the D. labrax genome as reference, sequenced reads obtained a total of about 1.6 million of single nucleotide polymorphisms (SNPs), spread all over the chromosomes. Transition/transversion (Ti/Tv) was equal to 1.28, comparable to what was already reported in Salmon species. A pilot homozygosity analysis across the D. labrax genome using DNA pool sequence datasets indicated that this approach can identify chromosome regions with putative signatures of selection, including genes involved in ion transport and chloride channel functions, amino acid metabolism and circadian clock and related neurological systems. This is the first study that reported genome wide polymorphisms in a fish species obtained with the Ion Proton sequencer. Moreover, this study provided a methodological approach for selective sweep analysis in this species.


Subject(s)
Bass/genetics , Genome , Polymorphism, Single Nucleotide , Animals , High-Throughput Nucleotide Sequencing/veterinary , Italy , Sequence Analysis, DNA/veterinary
5.
Radiol Med ; 121(2): 144-52, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26387096

ABSTRACT

Multidetector computed tomography (MDCT) represents the main source of radiation exposure in trauma patients. The radiation exposure of young patients is a matter of considerable medical concern due to possible long-term effects. Multiple MDCT studies have been observed in the young trauma population with an increase in radiation exposure. We have identified 249 young adult patients (178 men and 71 women; age range 14-40 years) who had received more than one MDCT study between June 2010 and June 2014. According to the International Commission on Radiological Protection publication, we have calculated the cumulative organ dose tissue-weighting factors by using CT-EXPO software(®). We have observed a mean cumulative dose of about 27 mSv (range from 3 to 297 mSv). The distribution analysis is characterised by low effective dose, below 20 mSv, in the majority of the patients. However, in 29 patients, the effective dose was found to be higher than 20 mSv. Dose distribution for the various organs analysed (breasts, ovaries, testicles, heart and eye lenses) shows an intense peak for lower doses, but in some cases high doses were recorded. Even though cumulative doses may have long-term effects, which are still under debate, high doses are observed in this specific group of young patients.


Subject(s)
Multidetector Computed Tomography , Radiation Dosage , Wounds and Injuries/diagnostic imaging , Adolescent , Adult , Female , Humans , Male , Young Adult
6.
PLoS One ; 10(7): e0131925, 2015.
Article in English | MEDLINE | ID: mdl-26151450

ABSTRACT

Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.


Subject(s)
Equidae/genetics , Genome , Horses/genetics , Polymorphism, Single Nucleotide , Animals , Comparative Genomic Hybridization , Genetic Variation , High-Throughput Nucleotide Sequencing , Male , Semiconductors , Sequence Analysis, DNA , X Chromosome , Y Chromosome
7.
PLoS One ; 10(4): e0121701, 2015.
Article in English | MEDLINE | ID: mdl-25923709

ABSTRACT

The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.


Subject(s)
DNA/genetics , Meat Products/analysis , Meat/analysis , Semiconductors , Sequence Analysis, DNA/methods , Animals , Cattle/genetics , Chickens/genetics , Ducks/genetics , Geese/genetics , Horses/genetics , Humans , Quail/genetics , Rabbits/genetics , Rats , Sheep/genetics , Swine/genetics , Turkeys/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...